FixKit: A Program Repair Collection for Python

Marius Smytzek
CISPA Helmbholtz Center for
Information Security
Saarbriicken, Germany
marius.smytzek@cispa.de

Lars Grunske
Humboldt-Universitat zu Berlin
Berlin, Germany
grunske@hu-berlin.de

Abstract

In recent years automatic program repair has gained much attention
in the research community. Generally, program repair approaches
consider a faulty program and a test suite that captures the pro-
gram’s intended behavior. The goal is to automatically generate a
patch that corrects the fault by identifying the faulty code locations,
suggesting a candidate fix, and validating it against the provided
tests. However, most existing program repair tools focus on Java or
C programs, while Python, one of the most popular programming
languages, lacks approaches that work on it.

We present FixKit a collection of five program repair approaches
for Python programs. Moreover, our framework allows for easy
integration of new repair approaches and swapping individual com-
ponents, for instance, the used fault localization. Our framework
enables researchers to effortlessly compare and investigate various
repair, fault localization, and validation approaches on a common
set of techniques.

CCS Concepts

« Software and its engineering — Software testing and debug-
ging; Search-based software engineering; Genetic programming;
Software libraries and repositories.

Keywords
Python, Program Repair

ACM Reference Format:

Marius Smytzek, Martin Eberlein, Kai Werk, Lars Grunske, and Andreas
Zeller. 2024. FixKit: A Program Repair Collection for Python. In . ACM, New
York, NY, USA, 4 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

Conference’17, July 2017, Washington, DC, USA

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-x-xxxx-Xxxx-X/YY/MM

https://doi.org/10.1145/nnnnnnn.nnnnnnn

Martin Eberlein
Humboldt-Universitat zu Berlin
Berlin, Germany
martin.eberlein@hu-berlin.de

Kai Werk
Humboldt-Universitat zu Berlin
Berlin, Germany
werkkai@hu-berlin.de

Andreas Zeller
CISPA Helmholtz Center for
Information Security
Saarbriicken, Germany
zeller@cispa.de

1 Introduction

Finding and fixing bugs in software is a time-consuming and error-
prone task. Especially in large software systems, it is challenging
to identify the root cause of a bug and to provide a fix that does
not introduce new bugs. Moreover, the fix should generalize to the
actual purpose of the program.

To address these challenges, researchers have developed auto-
matic program repair approaches that aim to automatically generate
patches for faulty programs. The goal is to identify the faulty code
locations, suggest a candidate fix, and validate it against the pro-
vided test suite. In recent years, program repair has gained much
attention in the research community, with a variety of approaches
focusing on different aspects of the repair process.

However, the majority of existing program repair tools focus
on Java or C programs [3, 9], while Python as one of the most
popular programming languages lacks approaches that work on
it. Since Python is widely used in various domains, including web
development, data science, and machine learning, it is crucial to
consider program repair that works on Python programs. In this
paper, we present FixKit, a collection of five program repair ap-
proaches for Python programs. Moreover, our framework allows for
easy integration of new repair approaches and swapping individual
components, for instance, the used fault localization.

Our framework enables researchers to effortlessly compare and
investigate the aspects and techniques of various repair, fault local-
ization, and validation approaches on a common base.

To summarize, our contributions are as follows:

Program Repair Collection We provide a collection of five
known program repair approaches for Python programs.
Common Framework We provide a common framework that
allows for easy integration of new repair approaches and
swapping individual components.

Subjects We provide an integration of Tests4Py in our frame-
work, a set of subjects based on the faults in BugsInPy to
evaluate the repair approaches and their components.

The remainder of this paper is structured as follows: In Sec-
tion 2, we provide an overview of program repair and the various
approaches and techniques comprised by FixKit. In Section 3, we
describe some implementation details of FixKit. In Section 4, we
provide instructions on how to install and use FixKit. In Section 5,

https://orcid.org/0000-0002-4899-9031
https://orcid.org/0000-0003-4268-7632
https://orcid.org/0009-0003-8791-4701
https://orcid.org/0000-0002-8747-3745
https://orcid.org/0000-0003-4719-8803
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Conference’17, July 2017, Washington, DC, USA

we present a preliminary evaluation to verify the functional cor-
rectness of the included repair approaches. In Section 6, we discuss
potential threats to the validity of the presented work. In Section 7,
we discuss some related work. Finally, in Section 8, we conclude
and provide an outlook on future work that we will conduct with
the help of FixKit.

2 Program Repair

As mentioned in the introduction, program repair aims to auto-
matically generate patches for faulty programs. Generally, we can
distinguish between two approaches to program repair: generate-
and-validate and semantic-based program repair. The generate-and-
validate approaches generate a set of candidate patches and validate
them against the provided test suite. Such approaches are often
based on search-based techniques, for instance, genetic program-
ming or evolutionary algorithms to iteratively improve the candi-
date patches by considering the provided test suite to produce a
fitness value for each candidate produced during the generation. In
contrast, the semantic-based approach uses the semantics of the pro-
gram to generate a patch, for instance, by using symbolic execution
or constraint solving to infer a correct code snippet.

In this paper, we focus on the generate-and-validate approach, as
it comprises not only the more widespread approaches in the field
of program repair but also more general approaches not focusing
on only a small subset of faults to repair.

These approaches generally consist of three main components:
fault localization, patch generation, and patch validation.

Fault Localization identifies the faulty code locations in the
program based on the provided test suite. The general idea
is that a code location is considered more likely to be faulty
if it is executed more often when a test fails and less often
when a test passes.

Patch Generation suggests a candidate fix for the identified
faulty locations. The candidate fix is usually generated by
applying mutations to the faulty code locations.

Patch Validation validates the candidate fix against the pro-
vided test suite. The candidate fix is considered the correct
patch if it passes all tests.

While fault localization is usually embedded in the repair al-
gorithm once, patch generation and patch validation are often in-
terleaving components that are iteratively applied to improve the
candidate patches.

2.1 Fault Localization

Fault localization is the process of identifying the faulty code lo-
cations in a program based on the provided test suite. The goal is
to identify the code locations that are most likely to be the cause
of the failing tests. Usually, fault localization techniques leveraged
by program repair approaches are based on statistical metrics, that
favor code locations, commonly lines, that are executed more often
when a test fails and less often when a test passes. Common metrics
are TARANTULA, OCHIAIL and JACCARD.

FixKit provides a set of fault localization techniques that can be
easily swapped and compared, which do not only include the inves-
tigation of lines as code locations but various other granularities
and aspects, for instance, conditions or branches.

Marius Smytzek, Martin Eberlein, Kai Werk, Lars Grunske, and Andreas Zeller

2.2 Approaches

FixKit includes a set of five program repair approaches that can
be easily compared and investigated. Those approaches comprise
GENPROG [9], MUTREPAIR [1], KALI [5], CARDUMEN [4], and AE [8].

GENPROG. GENPROG [9] employs genetic programming and the
competent programmer’s hypothesis to generate patches for faulty
programs. Genetic programming is used to evolve a population of
patches that are applied to the faulty program. The patches are
evaluated based on the provided test suite and a fitness function.
The fitness function is based on the number of failing tests that
are fixed by the patch and the number of passing tests that are still
passing with the patch. The fitness is defined as

FGenProg(P) = WposT X |{t € PosT|P passes t}|
+WNegT X [{t € NegT|P passes t}|)
where P is the patch, PosT is the set of passing tests, NegT is the
set of failing tests, and wp,sT and wyegr are the weights for the
passing and failing tests, respectively. For each generation, the ge-
netic programming selects the best candidates based on the fitness
function and applies random deletions, insertions, or replacements
of statements to iteratively find a correct patch. These mutations
target those statements that are most likely to be the cause of the
failing tests based on the statistical fault localization.

The competent programmer’s hypothesis states that a developer
is likely to already implemented an almost correct source code and
the fix is only a small change away. In this context, GENPROG does
not infer a new statement to insert or replace an existing one but
rather selects a statement from the faulty program itself.

MUTREPAIR. In contrast to GENPROG, MUTREPAIR [1] leverages
mutation operators to transform suspicious if conditions. The ap-
proach considers the if conditions as the most likely cause of the
failing tests based on the fault localization and applies mutations
that transform the operators in these conditions, for instance, from
==to !=or <to<=.

Moreover, MUTREPAIR performs an exhaustive search on the
current population, i.e., it considers all candidates in the current
population and applies all mutation operators to each of them, in
contrast to GENPROG, which applies selected mutations to randomly
selected candidates.

KALL The KALI [5] approach was designed to identify inadequat
test set. However, it also works as a program repair approach fol-
lowing the GENPROG repair loop but leverages mutation operators
that remove or skip certain parts of the code that are considered the
most likely cause of the failing tests based on the fault localization.
The approach considers the deletion of statements as the primary
mutation operator. Moreover, KALI introduces mutation operators
that skip certain parts of the code by setting if conditions to True or
False or by inserting return statements such that a function exits
early. Similar to MUTREPAIR, KALI performs an exhaustive search
on the current population and applies all mutation operators to all
candidates in the population.

CARDUMEN. In contrast to the other approaches, CARDUMEN [4]
is specifically designed to produce as many patches as possible by
considering an immersive search space. The approach proposes

FixKit: A Program Repair Collection for Python

the creation of templates based on the statements in a program.
These templates introduce placeholders for the variables in the
statements. When selected for mutation, the placeholders are re-
placed by arbitrary variables present in the scope of the statement
to repair.

CARDUMEN considers a probabilistic model to select the variables
to replace the placeholders. The model prioritizes variable combi-
nations that are more likely to be used in a statement together, i.e.
the more often a variable combination is used in the program, the
more likely it is to be selected to replace the placeholders.

AE. The AE [8] approach builds on GENPROG and eliminates the
randomness in the patch generation process by considering all
mutations up to a certain degree k. Moreover, the approach only
considers candidates that are unique in the sense that a candidate
is not equivalent to any candidate already verified.

It is worth highlighting that AE does not leverage evolutionary
algorithms and a fitness function to identify the best candidates, but
rather considers a candidate as a fix if and only if it passes all tests.
Moreover, in contrast to GENPROG, AE is completely deterministic
and does not consider random mutations but rather considers all
possible mutations it can apply.

To repair a program, AE leverages lazy evaluation to generate
a set of candidates with all possible mutations up to a degree k,
i.e, candidates that are generated by applying one mutation, two
mutations, and so on up to k mutations. In contrast to GENPROG, AE
only uses deletions and insertions as mutations, since replacements
are covered by the first deleting a statement and then inserting
another one, or vice versa. AE then leverages a repair strategy to
select the best candidate from the set of candidates based on the
fault localization information.

Next AE verifies that the selected candidate is unique by check-
ing if it is equivalent to any other candidate that has already been
verified. It considers syntactic equivalence, dead code, and the or-
der of statements to determine if two candidates are equivalent. If
the candidate is unique, the candidate gets validated against the
provided test suite by sequentially running all tests until the can-
didate passes all tests or it is discarded as soon as one test fails.
To determine the order of tests, AE employs a test strategy. The
test strategy prioritizes tests that are more likely to fail based on
previous executions of the tests.

As soon as a candidate passes all tests, it is considered as the fix
for the fault and the repair terminates, otherwise, the next candidate
is selected until all candidates have been verified.

3 Implementation

FixKit leverages two approaches for the fault localization. It allows
a fast localization based on the Python coverage module that ex-
tracts the needed values for the metrics from the collected per-test
coverage information. Moreover, it provides a more fine-grained
and powerful fault localization by embedding SFLKit [7], a fault
localization framework that allows for various fault localization
techniques and granularities.

The patch generation and validation are implemented for each
repair approach individually. However, FixKit provides a common
interface to swap individual components, for instance, the leveraged

1

Conference’17, July 2017, Washington, DC, USA

repair = PyGenProg.from_source(
= "subjects/middle",
=["tests.py"],
=Coveragelocalization(
"subjects/middle",
="middle",
="Ochiai",

=["tests.py"],

=49,
=10,
)

patches = repair.repair()

Figure 1: Example usage of FixKit to repair a subject located
in subjects/middle with GENPROG.

fault localization technique or the fitness function. Moreover, it
allows for easy integration of new repair approaches.

Additionally, we integrated Tests4Py [6], a benchmark of faulty
programs and their corresponding test suites based on the faults in
BugsInPy [11], into the framework. This allows for easy evaluation
of the repair approaches on a common set of subjects.

Moreover, FixKit allows for parallel execution of the repair can-
didates for the validation step to speed up the repair process.

4 Usage

Installing FixKit is as simple as running pip install fixkit.!
After installing the package, FixKit provides a library of all tech-
niques and repair approaches that can be leveraged in a Python
program. Figure 1 shows an example usage of FixKit to repair a
subject located in subjects/middle with GENPROG. The resulting
patches if any are returned by the repair method of any repair
approach.

5 Preliminary Evaluation

We thoroughly tested each component of FixKit to ensure that
the repair approaches, fault localization techniques, and validation
strategies work as expected by providing a set of unit tests that
verify the outcome of each component with assertions based on
what we expect.

Moreover, we conducted a preliminary evaluation of the re-
pair approaches on the infamous middle program. We leveraged
Tests4Py [6] to access this middle program, which Tests4Py assigns
the identifier middle;. Forwardly, we verified the functional correct-
ness of all included approaches, the fault localization techniques,
and the validation strategies.

We manually investigated each execution by stepping through
the repair process and verifying that our implementations stayed
true to the described approaches in their respective sources. More-
over, we verified that the fault localization techniques and the

IFor the latest version, please refer to the GitHub project.

Conference’17, July 2017, Washington, DC, USA

Table 1: Results of the preliminary evaluation.

Subject GENPROG MUTREPAIR KALI CARDUMEN AE
middle v X X v v

validation strategies worked as expected by checking the generated
patches and the validation results, which are shown in Table 1.

These results show that neither MUTREPAIR nor KALI were able
to generate a correct patch for the middle program. In contrast,
GENPROG, CARDUMEN, and AE were able to generate a correct patch
for the middle program. MUTREPAIR and KALI failed to generate
a correct patch for the middle program because of their set of
mutation operators that did not cover a possible fix for the fault in
the middle program.

6 Threats to Validity

Even though we thoroughly investigated the implemented repair
approaches, fault localization techniques, and validation strategies
and tried to ensure that we stayed true to their respective sources,
there might be errors in our implementation such that we did
not implement the repair algorithms as described in the source.
However, by manually stepping through each algorithm we are
convinced that our implementations do not contain any major flaws
and the various techniques work as expected.

Moreover, the preliminary evaluation was conducted on a single
subject, the middle program. While this subject is well-known in
the field of program repair, it might not be representative of the
general performance of the repair approaches. However, since we
want to verify the functional correctness of the repair approaches,
we are convinced that the results of the preliminary evaluation are
valid.

7 Related Work

Our benchmark is closely related to ASTOR [3], an automatic soft-
ware repair framework in Java. Since its initial publication, the
framework has been continuously expanded with other automatic
program repair approaches [4, 10]. These expansions have inte-
grated advanced techniques such as deep learning models for iden-
tifying and fixing bugs (as seen in DeepRepair [10]) and specialized
patch generation methods (as demonstrated by Cardumen [4]). The
ASTOR framework’s evolution highlights the importance of combin-
ing multiple strategies to enhance the robustness and effectiveness
of automated software repair.

Similarly, FixKit is a Python library that functions as a collection
of automated repair tools. Like ASTOR, FixKit leverages various
methodologies to address a wide range of bugs in Python programs.
The modular design of FixKit allows for the integration of new
repair techniques as they are developed, ensuring that the library
remains at the forefront of automated software repair technology.
This adaptability is crucial for maintaining relevance in the rapidly
evolving field of software development, where new bug patterns
and programming paradigms continuously emerge.

Furthermore, while ASTOR is tailored specifically for Java, FixKit
exemplifies a move towards more versatile tools that can potentially
be extended to support multiple programming languages. This trend

Marius Smytzek, Martin Eberlein, Kai Werk, Lars Grunske, and Andreas Zeller

underscores the necessity for repair tools that are not only powerful
but also adaptable to diverse coding environments and practices.

8 Conclusion and Future Work

In this paper, we presented FixKit, a collection of five program
repair approaches for Python programs. Moreover, we provided a
common framework that allows for easy integration of new repair
approaches and swapping individual components, for instance, the
used fault localization.

As part of our future work, we plan to extend the set of repair
approaches and fault localization techniques, especially by integrat-
ing diagnostic techniques that help to identify the root cause of
the fault, for instance, AVICENNA [2]. Moreover, we plan to conduct
a thorough empirical study to investigate the effectiveness of the
repair approaches on a larger set of subjects in Python to provide
insights into the strengths and weaknesses of the repair approaches.

Our framework is available as an open-source project on GitHub:

https://github.com/smythi93/fixkit

Acknowledgments

This research was partially funded by the Deutsche Forschungs-
gemeinschaft (DFG, German Research Foundation) — GR 3634/4-2
Emperor (261444241).

References

[1] V. Debroy and W. E. Wong. Using mutation to automatically suggest fixes for
faulty programs. In 2010 Third International Conference on Software Testing,
Verification and Validation, pages 65-74, 2010.

[2] M. Eberlein, M. Smytzek, D. Steinhéfel, L. Grunske, and A. Zeller. Semantic
debugging. In Proceedings of the 31st ACM Joint European Software Engineering
Conference and Symposium on the Foundations of Software Engineering, ESEC/FSE
2023, page 438-449, New York, NY, USA, 2023. Association for Computing Ma-
chinery.

[3] M.Martinez and M. Monperrus. Astor: a program repair library for java (demo). In
Proceedings of the 25th International Symposium on Software Testing and Analysis,
ISSTA 2016, page 441-444, New York, NY, USA, 2016. Association for Computing
Machinery.

[4] M. Martinez and M. Monperrus. Ultra-large repair search space with auto-
matically mined templates: The cardumen mode of astor. In T. E. Colanzi and
P. McMinn, editors, Search-Based Software Engineering, page 65-86, Cham, 2018.
Springer International Publishing.

[5] Z.Qi, F. Long, S. Achour, and M. Rinard. An analysis of patch plausibility and
correctness for generate-and-validate patch generation systems. In Proceedings
of the 2015 International Symposium on Software Testing and Analysis, ISSTA 2015,
page 24-36, New York, NY, USA, 2015. Association for Computing Machinery.

[6] M. Smytzek, M. Eberlein, B. Serce, L. Grunske, and A. Zeller. Tests4py: A bench-
mark for system testing, 2024.

[7] M. Smytzek and A. Zeller. Sflkit: a workbench for statistical fault localization.
In Proceedings of the 30th ACM Joint European Software Engineering Conference
and Symposium on the Foundations of Software Engineering, ESEC/FSE 2022, page
1701-1705, New York, NY, USA, 2022. Association for Computing Machinery.

[8] W.Weimer, Z. P. Fry, and S. Forrest. Leveraging program equivalence for adaptive
program repair: Models and first results. In 2013 28th IEEE/ACM International
Conference on Automated Software Engineering (ASE), pages 356-366, 2013.

[9] W. Weimer, T. Nguyen, C. L. Goues, and S. Forrest. Automatically finding patches
using genetic programming. In Proceedings of the 31st International Conference
on Software Engineering, ICSE 09, page 364-374, 2009.

[10] M. White, M. Tufano, M. Martinez, M. Monperrus, and D. Poshyvanyk. Sorting
and transforming program repair ingredients via deep learning code similarities.
In 2019 IEEE 26th International Conference on Software Analysis, Evolution and
Reengineering (SANER), pages 479-490, 2019.

[11] R. Widyasari, S. Q. Sim, C. Lok, H. Qi, J. Phan, Q. Tay, C. Tan, F. Wee, J. E.
Tan, Y. Yieh, B. Goh, F. Thung, H. J. Kang, T. Hoang, D. Lo, and E. L. Ouh.
Bugsinpy: a database of existing bugs in python programs to enable controlled
testing and debugging studies. In Proceedings of the 28th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the Foundations of
Software Engineering, ESEC/FSE 2020, page 1556-1560, New York, NY, USA, 2020.
Association for Computing Machinery.

https://github.com/smythi93/fixkit

	Abstract
	1 Introduction
	2 Program Repair
	2.1 Fault Localization
	2.2 Approaches

	3 Implementation
	4 Usage
	5 Preliminary Evaluation
	6 Threats to Validity
	7 Related Work
	8 Conclusion and Future Work
	Acknowledgments
	References

