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Abstract

Why does an input fail in an application? To help developers find the root causes of the
program failure, Kampmann et al. [KHSZ20] proposed an approach to automatically
determine the circumstances of program behavior. Their tool Alhazen associates the
program’s failure with the features of the input data, allowing them to learn and extract
the properties that result in bug-triggering behavior. First, Alhazen uses a grammar to
extract the syntactical features of the inputs samples. Then, Alhazen trains a Decision
Tree to learn the features that are responsible for the behavior in question and creates
a hypothesis as to why the inputs result in a failure of the program. Finally, by using
the grammar to generate more inputs iteratively, Alhazen can refine and strengthen its
initial hypothesis. However, Decision Trees are known to overfit the training data and
thus are usually outperformed by other machine learning approaches. In this thesis,
we build on the work of Kampmann et al. and replace the Decision Tree learner in
Alhazen with more advanced and more powerful machine learning models, which could
capture failure circumstances more precisely. However, while other machine learning
estimators may provide better predictions, they are also much harder to interpret or
explain. We tackle this problem by proposing a modified learning method to extract
and refine two ensemble estimators: the Random Forest and the Gradient Boosting
Tree. We implemented our approach AlhazenML as an extension of Alhazen and
evaluated its e�ectiveness on a set of ten real-world subjects. Our evaluation shows
that our approach was able to improve the behavior classification for five subjects
significantly and performs equally to Alhazen for the remaining subjects.
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1. Introduction

Nowadays, software applications are often deployed in safety-critical or insecure do-
mains, where the delivery of correct programs is undeniably crucial. In particular,
modern software applications control safety-critical components, including medical
diagnoses [LNV+18], tra�c control [RBVK18], and self-driving cars [FNR14], where
faulty or unreliable programs can have a serve impact on human lives. Therefore,
unsurprisingly, developers need to apply extensive testing methods to account for all
circumstances. Unfortunately, modern software becomes increasingly complicated to
test and verify due to the steady increase in complexity. Nevertheless, recent advantages
in testing have shown great success in finding erroneous behavior and vulnerabilities in
many di�erent components. Recent testing techniques, like fuzzing [MFS90, FMEH20],
generate random input data and enhance or mutate them to trigger potential defects or
software vulnerabilities. Although they have proven capable of detecting and generating
erroneous input data, they often lack an explanation of why specific input data results
in incorrect behavior. However, when diagnosing why a program fails, the first step
is to determine the circumstances under which the program failed. Kampmann et
al. [KHSZ20] presented an approach to automatically discover the circumstances of
program behavior. Their approach associates the program’s failure with the syntac-
tical features of the input data, allowing them to learn and extract the properties
that result in the specific behavior. Their tool Alhazen can generate a diagnosis and
explain why, for instance, a particular bug occurs. More formally, Alhazen forms a
hypothetical model based on the observed inputs. Additional test inputs are generated
and executed to refine or refute the hypothesis, eventually obtaining a prediction
model of the circumstances of why the behavior in question takes place. Alhazen use a
Decision Tree classifier to learn the association between the program behavior and the
input features. Although Decision Tree learners are among the most popular machine
learning algorithms [TN�T20], given their comprehensibility and simplicity, they often
are incredibly prone to small changes in the input data. Minor variations may already
result in a complete change in the tree and consequently the final predictions [Bre01].

In this thesis, we build on the work of Kampmann et al. [KHSZ20] and replace the
Decision Tree learner in Alhazen with more advanced and more powerful machine
learning models, namely Random Forests and Gradient Boosting Trees, which could
capture failure circumstances more precisely. However, while other machine learning
estimators may provide better predictions, they are much harder to interpret or explain.
Many so-called strong learners trade comprehensibility and interpretability for better
accuracy and precision. Due to the lack of interpretability, the main challenges are
utilizing better estimators to generate additional inputs to refine the hypothesis and
providing the developers with a human-interpretable explanation of the failure cir-
cumstances. To limit the scope of this thesis, we focus on white-box machine learning
models, particularly ensemble estimators that construct and operate white-box models,
specifically Decision Trees. We selected the Random Forest and the Gradient Boosting
Tree for our approach. On the one hand, we chose the ensemble estimators due to their
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(a) Initial Inputs (b) Learning Phase (c) Refinement Phase (d) Explanation

Figure 1: Overview of our approach iteratively learning to approximate the error region
(pink shaded area in Subfigure (a)) by generating additional inputs (orange
and black dots) close to the decision boundaries ((b) and (c)). Finally, we
interpret the machine learning models decision and derive an explanation of
the features that are responsible for the program behavior (d).

tendency to correct Decision Trees’ habit of overfitting to the training data and, on the
other hand, due to their recent success for many di�erent classification and regression
tasks [CCW18]. Figure 1 gives an overview of the individual steps of our approach
and how we adapted the initial steps of Alhazen to refine the hypotheses of our new
ensemble classifiers. Similar to Alhazen, our approach starts with a set of initial inputs -
bug-triggering and non-bug-triggering - and their corresponding input language format
also known as grammar (a). Then, the ensemble estimator, i.e., the Random Forest,
tries to associate the syntactical features with the program behavior and hypothesizes
why the program fails (b). In the next step, we refine the hypothesis by analyzing
the decision boundaries of the ensemble classifier and generating additional inputs (c).
Finally, in the last step, we analyze why the estimator made specific decisions and
explain what part of the input files leads to the observed outcome (d).

With this thesis, we aim to explore and evaluate di�erent machine learning alternatives
for Alhazen. In addition, we implemented our extension in the tool AlhazenML to
evaluate and compare the di�erent machine learning candidates on a set of established
real-world programs. The following research questions guide the evaluation of our
approach:

RQ1 Does AlhazenML allow us to predict the behavior of a program more
precisely?

RQ2 Does AlhazenML allow us to produce more defect triggering inputs
e�ciently?

In summary, this thesis makes the following contributions:

• First, we propose two new tree-based machine learning models for Alhazen, namely
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the Random Forest and the Gradient Boosting Tree, to e�ciently and reliably
identify the circumstances of a program’s behavior.

• We implement our concepts in AlhazenML and extend the recently proposed
Alhazen by introducing an adapted learning process.

• We report our results from an extensive evaluation and show that AlhazenML

compares favorably for many subjects.

The remainder of this thesis is structured as follows: Section 2 surveys the state of
the art of explaining the behavior of programs, test case generation, and explainable
machine learning. Section 3 provides the theoretical background on machine learning
techniques and context-free grammars, as well as an introduction of the tool Alhazen.
Then, in Section 4, we explain our approach of incorporating di�erent machine learning
alternatives to determine the circumstances of the program’s behavior. Section 5
and Section 6 present the experimental methodology and the experimental results of
our extensive evaluation. Afterwards, we discuss the results in Section 7. Finally, we
conclude this thesis in Section 8 and sketch some directions for future research.
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2. Related Work

In this Section, we present the related work, literature, and current research directions.

Program Behavior Classification Recently, Tizpaz-Niari [TN�T20] proposed an
approach to determine and explain di�erential performance bugs in machine learning
libraries. Their tool DPFuzz uses an evolutionary fuzzing approach to generate inter-
esting inputs and then clusters them according to their execution and performance
time. Finally, DPFuzz uses a Decision Tree to determine and explain the performance
di�erences in terms of program inputs and internals. However, in contrast to Alhazen
and our approach, Tizpaz-Niari et al. do not generate additional inputs according to
the predictions of the tree and solely rely on the mutational fuzzing operators.

Machine learning techniques are also often used to learn models that classify programs
into benign and malicious software for vulnerability detection. For example, Elish et al.
[EE08] use support vector machines (SVMs) to predict defect-prone software modules
and show that SVMs can be used to increase the confidence in software applications.
Additionally, Lo et al. [LCH+09] proposed a technique that first extracts iterative
patterns from program traces of known ordinary and failing executions. Then they
perform feature selection to select the most promising features for classification. These
features are then used to train a classifier to detect program failures. Furthermore,
Delphine Immaculate et al. [DIFBF19] evaluate the practical relevance of deploying
machine learning techniques to help developers increase the reliability of their software.
Similar to our approach, they consider di�erent models and conclude that Random
Forests are preferred due to their generalizability.

Generative Adversarial Networks A generative adversarial network (GAN) is a class
of machine learning frameworks designed by Goodfellow et al. [GPAM+20]. It contains
two neural networks that compete against each other. This technique generates new
data with the same statistics as the training. The core idea is based on the "indirect"
training through the discriminator, which is also updated dynamically. This concept is
also loosely related to Alhazen and our approach, where the machine learning model
and the input generator can be considered to be two separate players. In our case, the
generator tries to fool the machine learning model by generating additional data close
to the decision boundaries. By executing the new inputs and comparing the prediction
to the actual outcome, we can use these new inputs to improve the learned associations
between the input features and the resulting outcome. After several iterations of the
feedback loop, the machine learning model can refine its hypothesis and may predict
program behavior more precisely.

Explainable Machine Learning With the availability of large databases and recent
improvements in deep learning methodology, the performance of AI systems is reaching
or even exceeding the human level on an increasing number of complex tasks. However,
because of their nested non-linear structure, these highly successful machine learning
models are usually applied in a black-box manner, i.e., no information is provided
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about what exactly makes them arrive at their predictions [SML+21]. Since this lack
of transparency can be a major drawback, e.g., in medical applications [LNV+18], or
finance [BGMP21], research towards explainable machine learning has recently attracted
increasing attention. The literature can often be separated into deriving local or global
explanations. While local explanations interpret the machine learning model for exactly
one prediction, global explanations focus on the entire model behavior. Ribeiro et al.
[RSG16] proposed a local interpretable surrogate model (LIME) to explain individual
predictions of black-box models. These surrogate models are trained to approximate
the decisions of the underlying machine learning model. LIME achieves this by probing
the black-box model with slightly changed data and observing the predictions of the
machine learning model. By only searching locally with slight variations, LIME can
explain individual predictions. Lundberg and Lee [LL17] proposed a coalitional game-
theoretic approach called SHAP to combine LIME with Shapley Values [Sha16] to
determine the contributions of individual features to a final prediction. Later, Lundberg
et al. [LEC+20] extended their approach with a faster implementation, particularly for
tree-based models, which significantly reduced computational overhead.

While SHAP can be used for local explanations, their approach also allows global
interpretations of machine learning models (e.g., feature importance, summary plots, or
dependency plots). Since many global explanation approaches, including SHAP, reduce
the black-box models’ decision to a limited set of features, Ibrahim et al. [ILMP19]
introduced an approach to explain the predictions across many di�erent sub-populations.
Their local attributions technique detects global patterns in a dataset by grouping
similar data points into a cluster. They then use clustering algorithms to identify the
K-local attributions minimizing the pairwise dissimilarity within a cluster, which allows
them to derive concrete and precise explanations for similar data.

Generative Input Generation A key component of Alhazen and our approach is the
additional input generation to refine the hypothesis. Randomly generating inputs is
an e�ective means to test a program for robustness. Recent strategies, like fuzzing,
have shown immense success in finding many di�erent defects in various software
applications [FMEH20]. However, to reach deep layers of the program, inputs must
conform to the required input language and, thus, be syntactically valid. Havrikov
and Zeller [HZ19] introduced a grammar-based method to syntactically cover elements
of the grammar that allows revealing more profound defects cost-e�ectively. In the
context of grammar-based fuzzing, the generation of new inputs can also be guided
by probabilities attached to competing rules in the grammar, thus controlling the
distribution of syntactical elements. Using a set of input seeds to obtain a probabilistic
grammar, Sorumekun et al. [SPH+20] generate similar inputs to the seeds, or, by
inverting the probabilities of the grammar, generate dissimilar inputs. Fuzzing can
also be combined with learning mechanisms. For example, Cummins et al. [CPML18]
use a neural network to learn from real-world code and then generate new inputs to
discover various defects. Similarly, Godefroid et al. [GPS17] use a neural network in an
unsupervised machine learning setting to test security-critical parser and compiler.
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3. Background

Our extension of Alhazen focuses on iteratively refining machine learning techniques
and learning syntactical features of inputs. These syntactical properties are extracted
from a context-free grammar and are associated with the program’s behavior. In this
Section, we define the necessary terminology and present the necessary foundations
of our approach. We give a brief overview of di�erent machine learning alternatives,
context-free grammars, and a short introduction of the tool Alhazen.

3.1. Terminology

In the following we will state some terminology that may have di�erent connotations
among the literature. These definitions are closely related to [Mol19]:

Definition 1 (Machine Learning). Machine Learning is a set of methods that allow
computers to learn from data to make and improve certain predictions.

Definition 2 (Machine Learning Algorithm and Model). A Machine Learning Algo-
rithm is used to train a Machine Learning Model that associates input data with the
outcome. In the following we will also call them classifier or estimator.

Definition 3 (Black-Box Model). A black-box model is a machine learning model
that does not reveal the decisions it made to map the input data to the output. For
instance, Neural Networks are considered black-box models, as we often do not know
on what properties of the input data they based their prediction.

Definition 4 (White-Box Model). Contrary to black-box models, white-box models
are often referred to as interpretable models, and allow us to comprehend each decision
the model made to derive a prediction. In this thesis, we will mainly focus on white-box
models or ensemble models that operate and construct a set of white-box models.

Definition 5 (Weak/Strong Learner). Weak learners are models that perform just
slightly better than random guessing, whereas strong learners can perform arbitrarily
well for a given classification task.

Definition 6 (Ensemble Estimator). An ensemble estimator, in general, is a model
that makes predictions by training and operating several di�erent models. Combining
di�erent models makes an ensemble machine learning model more flexible, less biased,
and less data-sensitive (less variance). We can use ensemble techniques like bagging
(Section 3.2.2) and boosting (Section 3.2.3) to combine many weak learners into one
strong learner.
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3.2. Machine Learning

Alhazen and our approach use machine learning teqchniques to associate the program’s
behavior with the features of the input data. Usually, machine learning approaches can
be divided into three main categories:

• supervised learning,

• unsupervised learning,

• and reinforcement learning.

Supervised learning uses training data and their desired outputs to learn a general rule
that maps inputs to outputs. For an unsupervised learning setting, the corresponding
algorithm is given no outputs labels, and it has to identify the structural di�erences
between the inputs on its own. Therefore, unsupervised learning is often used to detect
clusters of data or hidden patterns. Finally, for reinforcement learning, the algorithm
or machine learning model can interact with the surrounding environment, where it
tries to maximize a particular goal. For the context of this thesis, we will be focusing
on supervised learning.

Supervised learning algorithms build a mathematical model of training data con-
taining the inputs and the desired outputs, also called labels. In the mathematical
model, the training data is often represented as a vector of properties or features. These
vectors are also known as feature vectors. One of the most common applications of
supervised learning is in the context of classification. Through iterative optimization
of an objective function, supervised machine learning algorithms learn a function that
can predict the output of new inputs. An optimal function will allow the algorithm
to correctly determine the output for inputs that were not part of the training data.
An algorithm that improves the accuracy of its outputs or predictions over time has
learned to perform that task. In the following, we will introduce three commonly used
supervised learning algorithms:

3.2.1. Decision Tree

The Decision Tree classifier [SH77] is a white-box classification model that predicts a
target variable (e.g., if an input is bug-triggering or non-bug-triggering) by inferring
specific decision rules. As the name already suggests, a Decision Tree is a tree-like
structure where an internal node represents a predicate f Ø v, with f being the feature,
the branch represents a decision rule, and each leaf node represents the prediction
outcome. The topmost node in a Decision Tree is known as the root node. For instance,
Figure 2 shows a learned Decision Tree on the passenger data of the Titanic along
with the classification labels that state whether a passenger survived. The tree shows
that female passengers and male children under the age of 10 had the highest chances
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gender == female?

survived age Æ 9.5?

survived died

yes no

yes no

Figure 2: A Decision Tree (of height h = 2) showing the passengers’ chances of survival
on the Titanic. The highest chances of survival had passengers that were
either (i) female or (ii) male with age less than 9.5.

of survival1. The tree learned to associate the passengers’ survival according to the
features gender and age. When a Decision Tree model classifies a sample s, it traverses
its internal structure in the following way: Starting at the root node, the predicate in
the node is checked against the (features of) the sample. If it is fulfilled, the yes branch
is examined next; otherwise, the traversal continues at the no branch. As soon as the
traversal reaches a leaf, the label of this leaf is the prediction.

In order to use such a Decision Tree for classification tasks, the trees need to learn
how to partition a set of training data based on feature values. One of the most common
techniques to grow a Decision Tree is to use the CART algorithm [BFOS84]. The main
idea of the algorithm is to select input features and split points on those variables
until a suitable tree is constructed. The selection of which input features to use and
the specific split or cut-point is chosen using a greedy algorithm that minimizes a cost
function. The tree construction ends with a predefined stopping criterion, for instance,
a minimum number of training instances assigned to each leaf node.

The recursive partitioning of the CART algorithm and the tree-like structure make
it easy for us to examine which features and predicates were used for the classification.
Furthermore, the visualization is like a flowchart diagram that easily mimics human-level
thinking. This is one of the main reasons why Decision Trees are often straightforward
to understand and interpret. Resultingly, we consider the Decision Tree to be a white-
box type of machine learning model. This is because it shares internal decision-making
logic (i.e., the decision path traversal), which is often not available in black-box models
such as Neural Networks. In addition, the Decision Tree is a distribution-free or non-
parametric method, which does not depend upon probability distribution assumptions.
Therefore, decision trees can handle high-dimensional data with reasonable accuracy.

3.2.2. Random Forest

Nonetheless, Decision Trees have a significant disadvantage: if they are grown too
deep, they often cause overfitting to the training data, resulting in a high variation of

1Note that this is a simplified example, the actual data and the precise classification model also
include the number of spouses or siblings aboard.

13



Figure 3: Overview of the Random Forest classifier [UKHM19] and how it uses a
combination of many Decision Trees to derive a prediction for a sample input.

the classification outcome for a slight change in the input data. Moreover, they are
susceptible to their training data, making them error-prone to most real-world datasets.

To increase the robustness of the machine learning model, we can use a technique
called bagging, where we train many machine learning models (weak learners) in parallel.
As a result, each model learns from a random subset of the data. One of the most
notable applications for bagging is found in the Random Forest estimator [Bre01]. The
algorithm is based on random subspaces and uses the CART Decision Trees as the base
algorithm. Therefore, a Random Forest trains and operates a combination of di�erent
Decision Trees in parallel.

Figure 3 shows an illustration of the Random Forest algorithm. To classify a new
sample s, the sample must pass down each Decision Tree of the Random Forest. Then,
each tree considers a di�erent part of the sample feature vector and gives a prediction
outcome. Finally, the forest chooses the classification of having the most ‘votes’ (for
discrete classification outcome) or the average of all trees in the forest (for numeric
classification outcome). This procedure is often also referred to as majority voting. Since
the Random Forest algorithm considers the outcomes of many di�erent Decision Trees,
it can reduce the variance resulting from considering a single tree for the same dataset.
This means that while the predictions of a single tree are highly sensitive to noise in
its training set, the average of many trees is not, as long as the trees are not correlated.
Simply training many trees on a single training set would give strongly correlated trees
(or even the same tree many times, if the training algorithm is deterministic); bagging
is a way of de-correlating the trees by showing them di�erent training sets.

3.2.3. Gradient Boosting Trees

Contrary to training many models in parallel, we can also reduce the bias of an
individual Decision Tree by training many models sequentially. This technique is known
as boosting, where we combine many weak learners into a single strong learner, and
each model learns from the mistakes of the previous model. One of the most notable
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applications for boosting is found in the Gradient Boosting Tree estimator [Fri01].
Gradient Boosting Trees represent a di�erent kind of training algorithm. An ensemble
of trees is incrementally built by training each new tree based on the data samples
misclassified by the previous trees. For Random Forests, the final classification output
is typically obtained through a voting mechanism (e.g., majority voting). Contrary,
Gradient Boosting Trees use a binary reduction scheme, such as one-vs-all or one-vs-one,
for multi-class classification. All the trees are connected in series, and each tree tries to
minimize the error of the previous tree. Due to this sequential connection, boosting
algorithms are usually slow to learn; however, they can also be highly accurate.

We train the individual Decision Trees such that each new learner fits into the
residuals of the previous tree. The final model aggregates the result of each tree, and
thus, a highly accurate and precise machine learning model is obtained. To detect
the residuals, we use a loss function. For instance, the mean squared error (MSE)
can be used for a regression task, and the logarithmic loss (log loss) can be used for
classification tasks. Finally, it is worth noting that existing trees in the model do not
change when a new tree is added because the added Decision Tree learns from the
mistakes of the previous model.

One problem that we may encounter in Gradient Boosting Trees but not Random
Forests is overfitting because of too many trees. In Random Forests, the addition
of too many trees will most likely not cause overfitting. Consequently, the model’s
accuracy does not improve after a certain point; however, we mitigate the threat of
overspecializing. On the other hand, for Gradient Boosting Trees, we have to be careful
about the number of trees we select. By adding too many sequential Decision Trees,
we run the risk of overfitting due to the overspecialization of the training data.
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ÈExprÍ æ ÈTermÍ | ÈExprÍ "+" ÈTermÍ | ÈExprÍ "-" ÈTermÍ ;
ÈTermÍ æ ÈFactorÍ | ÈTermÍ "/" ÈFactorÍ | ÈTermÍ "*" ÈFactorÍ ;
ÈFactorÍ æ "+" ÈFactorÍ | "-" ÈFactorÍ | "(" ÈExprÍ ")" ÈFactorÍ | ÈIntÍ;
ÈIntÍ æ ÈDigitÍ | ÈDigitÍ ÈIntÍ;
ÈDigitÍ æ "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9";

Figure 4: Context-Free Grammar G, which allows us to produce arithmetic expressions.

3.3. Context-Free Grammars

Context-free grammars are a well studied field of theoretical computer science, com-
piler design, and linguistics [HMU01]. Context-free grammars are used to describe
programming languages and can be used to automatically generate parser-programs in
compilers.

Definition 7 (Context-Free Grammar). A context-free grammar is a 4-tuple (N,T,P,s),
where N is the set of non-terminals, T the set of terminals, P the set of productions
rules with P : N æ (N fi T ), and ÈsÍ œ N the initial starting symbol. Production rules
are used to expand a non-terminal ÈSÍ œ N to one of its n alternatives Ai:

ÈSÍ æ A1 | A2 | A3 | ... | An (1)

A tuple (u, v) œ P can also be described using the binary relation u æ v, which is
called a derivation. The most important short hand for derivations is u æú v which
signifies u derives to v using any amount of derivations. An expression w is called a
word of the Grammar G if it is derivable via s æú w. A collection of words is called
language.

To demonstrate the usage of a context-free grammar, lets assume a simple example
grammar, that allows the production of arithmetic expressions. Figure 4 shows the
production rules P of grammar G, with the non-terminals N = {ÈExprÍ, ÈTermÍ,
ÈFactorÍ, ÈIntÍ, ÈDigitÍ}, the terminals T = {"0", "1", "2", .., "9", "+", "-", "*", "/",
"(", ")"}, and S0 = {ÈExprÍ} as the starting symbol. By following the specified rules,
this grammar can now be used to generate arithmetic expressions or can be used to
verify if an input is part of the language that the grammar portrays. Let us assume
the word 3+6. One possible derivation sequence of the grammar G is: (1) ÈExprÍ (2)
concatenation of ÈExprÍ "+" ÈTermÍ (3) ÈExprÍ (4) ÈTermÍ (5) ÈFactorÍ (6) ÈIntÍ (7)
ÈDigitÍ (8) "3" (9) "+" (10) ÈTermÍ (11) ÈFactorÍ (12) ÈIntÍ (13) ÈDigitÍ (14) "6".
Therefore the word 3+6 is in the language of G.

The property of a word (or input) that can be described using only a context-free
grammar is called a syntactical feature. For instance, for our grammar G, we can define
the syntactical feature that states whether the non-terminal ÈFactorÍ was used to
derive a word of the language. Therefore, the word 3+6 has that property because in
step (11) of the derivation sequence, we used ÈFactorÍ to create the word.
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3.4. Alhazen: Learning Circumstances of Software Behavior

Considering the di�culties of determining the circumstances of a program’s behav-
ior, Kampmann et al. [KHSZ20] presented an approach to automatically learn the
associations between the failure of a program and the input data. Their proposed
idea a�liates specific syntactical features of the input, like input length or presence
of specific derivation sequences, with the behavior in question. This allows their tool
Alhazen to form a hypothesis on why failure-inducing input files result in a defect.

Given a set of initial input files - at least one failure-inducing input file is required -
and their execution outcomes, which determine whether the behavior in question is
present or not, Alhazen parses the input files into its elements using a given input
grammar. To extract and learn the properties and features of the input data, Alhazen
uses a Decision Tree learner. The learner is used to capture the circumstances that
distinguish the program’s behavior. Hence, the Decision Tree learns associations between
the program’s behavior and the features of the individual inputs. In general, Decision
Trees - in particular classification trees - can function as a predictive model to classify
observable properties of input data to predict the targeted outcome. Kampmann et al.
[KHSZ20] use a set of artificial features to capture whether a particular property in the
input is present or not. These features are derived from the context-free grammar of the
input language. The authors carefully used feature engineering - the process of using
specific domain knowledge to extract features (characteristics, properties, attributes)
from the raw input data - to extract the following purely syntactical features from the
parse tree of the individual input files:

- The presence or absence of non-terminal symbols (Existence)

- The length of individual nodes in the parse tree (Length)

- The code point of characters of a parse tree node (Maximal Code Point)

- The numeric representation of a parse tree node (Numeric Interpretation)

According to the extracted features, the Decision Tree constructs a tree that explains
and predicts whether the behavior in questions occurs. In particular, Alhazen forms
a hypothesis based on the syntactical features and tries to generate a Decision Tree
to distinguish between all observations so far. Since the initial hypothesis may still
be optimizable, further inputs are necessary to refine the model. Hence, Alhazen uses
the provided grammar as a means to produce more input samples. By extracting the
predicates responsible, e.g., for the failure of a program, from the Decision Tree, Alhazen
can use these new inputs specifications to generate similar inputs to verify - or falsify -
the learned model.

17



The input generator starts by reducing and slicing the input grammar, excluding all
production rules and alternatives not required by an input specification. In the next step,
Kampmann et al. eliminate all specifications that are infeasible within the grammar.
For instance, if the input specification contains existence features that contradict
each other, the generator will not be able to produce such input. Consequently, the
specification is deemed infeasible and is not considered. Due to the grammar ambiguity
introduced with the grammar transformation, all possible parse trees - that derive the
same word - need to be considered and checked if an input specification is eligible
for removal. Finally, the input generator produces new candidates by constructing
grammar derivation sequences that fulfill the input specification. If their tool cannot
produce an input within two minutes, the specification is again considered infeasible
and removed.

After the newly generated input files have been executed and labeled, the feedback
loop start over with parsing and extracting the syntactical features of the new inputs.
During each iteration of the feedback loop, Alhazen trains a new Decision Tree on all
known samples and uses the learned predicates to generate additional input samples,
to eventually produce a theory of the circumstances that resulted in the program’s
behavior.

As previously mentioned in Section 3.2, Decision Tree classifier are extremely prone
to minor changes in the data set, resulting in completely di�erent prediction outcomes.
Due to the randomized nature of generating new inputs to refine the hypothesis, Alhazen
could profit from more consistent and more precise machine learning techniques.
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Figure 5: Overview of our approach.

4. Evaluating Software Behavior with Di�erent Machine

Learning Alternatives

In this Section, we will present our approach, a modified extension of the tool Alhazen,
that allows us to predict and classify the circumstances of the program’s behavior
more precisely. The key idea behind our approach is to combine the already existing
strategy with more advanced machine learning techniques, aiming to improve the overall
prediction capabilities of Alhazen. In practice, Decision Trees are often considered weak
learners, and other machine learning models might perform more favorably regarding
accuracy and precision. Furthermore, we propose a comprehensive framework that
allows developers to incorporate new classifiers and introduce an extended and modified
learning process to cope with the challenges of deploying other machine learning
methods. Thus, we claim that our approach may help developers and software engineers
derive a better explanation for the root causes of the behavior in question, for instance,
why an input file resulted in a program’s crash.

Figure 5 gives an overview of the internal process structure and individual activities
of our proposed extension. The activities that we did not modify (Activities 1, 4, and
5) and the Decision Tree Classifier from the initial approach are colored grey. Our
contribution is the modified learning process with Activities 2, 3, and 6.

Overview Similar to the initial approach, our extension starts with extracting the
initial features based on the user-provided grammar and the set of initial input samples.
The grammar defines the input language of the subject under test (SUT) and allows
us to associate syntactical grammar features with the program behavior. Then, with
the help of the grammar, the initial input files are parsed according to a pre-defined
set of features (Activity 1). Based on the extracted syntactical features and the test
outcomes of the input files, we can deploy supervised learning methods to determine
a mathematical model that maps input features to the test outcome (Activity 2).
Since we are interested in explaining the circumstances of the observed behavior, we
assign inputs to either (i) behavior is present (bug-triggering), or (ii) behavior is absent
(benign) class. The ultimate goal is to learn a general rule that maps the syntactical
input features to the test outcomes. An optimal function will allow the machine learning
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model to correctly determine the program behavior for an input file, which was not part
of the training data. For our approach we propose the Random Forest classifier and the
Gradient Boosting Tree, to learn the properties of the inputs that are responsible for
the program behavior. However, to learn such an optimal function, a classifier needs
to be trained on a su�cient amount of input files. Unfortunately, developers often
have only a handful of input files that trigger the specific behavior. To counteract this
problem, Alhazen uses the initially learned classification model to generate additional
input files based on the learned input features. The goal is to refine or refute the initial
hypothesis to explain the circumstances of the program’s behavior. Thus, the features
the classifier associates with the program behavior need to be extracted (Activity 3)
and additional input files generated.

The input file instructions (specifications) for the new inputs are parsed to the input
generator, which generates additional input files based on a given set of feature require-
ments (Activity 4). Then, the new input files are executed, and the corresponding test
outcomes are obtained to verify if the new input files result in the program behavior in
question (Activity 5). Finally, we can use the feedback and test outcome from the new
inputs to start the learning and classification process again, iteratively refining and
finetuning the hypothesis of the classifier, eventually deriving a mathematical model to
predict the output associated with new inputs correctly.

After a pre-defined stopping criterion is fulfilled, e.g., the number of iterations or
time budget is exceeded, the last step of our approach is to derive a final explanation
or theory on the circumstances of the behavior in question (Activity 6). In the initial
approach, this step was indirectly included with the natural and easy interpretability of
the Decision Trees and their good explainability to humans. However, more advanced
machine learning approaches are not as easy to interpret and thus require a separate
interpretation phase before the final theory on the circumstances of the behavior can
be obtained.

Feature Space Before we explain the individual steps of our approach, we quickly
highlight the construction of the feature space. After Alhazen parsed the input files and
extracted the syntactical features, each input can be represented as a feature vector
where each dimension represents one of the syntactical features in correspondence to
the input grammar (Section 3.4). Thus, each syntactical valid input file corresponds
to a point in an n-dimensional feature space. However, note that not all points in
the feature space correspond to valid inputs. For instance, let us consider the custom
calculator grammar from Kampmann et al. [KHSZ20]. An input file cannot have the
two existence features <exists(ÈfunctionÍ == "sqrt")> and <exists(ÈfunctionÍ ==
"tan")> simultaneously equal to 1, since this would contradict the grammar. A point
that lives in this feature plane does not belong to a valid input of the grammar.

To illustrate how our proposed machine learning models use the feature space for
the refinement of their hypothesis, let us consider the following simplified example:
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(a) Feature Space and Error Region (b) Inputs in the Feature Space

Figure 6: 2-Dimensional Feature Space with Error Region. Dots within the error region
are displayed in orange and are evaluated to bug-triggering; black dots outside
the error region correspond the benign inputs.

Figure 6a shows a two-dimensional feature space. Additionally, it shows an error region
inside the feature space. Therefore, every valid input (represented as a two-dimensional
feature vector) that corresponds to a point in the error region will be evaluated to be
bug-triggering. Figure 6b shows the feature space and a set of inputs projected into the
plane. Inputs displayed in orange are evaluated to be bug-triggering, and the black dots
correspond to non-bug-triggering (benign) inputs. The goal is to learn the associations
between the features and the outcome and precisely predict whether an input will
fail the program. The following sections will continuously extend this example and
illustrate how the di�erent models derive their predictions and how our approach refines
its hypothesis.

In the following, we will describe each step and activity of our modified learning
process in more detail.
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4.1. Training new Classification Model

After the inputs and the corresponding feature vectors are obtained, the next step is to
learn the features and predicates responsible for the program behavior. Given the set
of feature vectors and their test outcome labels, the problem of discriminating learning
becomes a standard classification problem. Subsequently, Alhazen and our approach
use this information to localize regions in the feature space responsible for the behavior
in question.

This step is illustrated in Figure 5 as Activity 2 and marks the beginning of our
modified learning process. Initially, Kampmann et al. [KHSZ20] proposed a Decision
Tree Model to learn the features associated with the program’s behavior. Unfortunately,
although Decision Trees have an advantage regarding interpretability, they often can
not compete with other so-called strong learners regarding accuracy and precision.
Moreover, Decision Trees tend to overfit, resulting in poorer performance on the ”real-
world data” than on the training data. To improve the classification, we replace the
Decision Tree learner and extend Alhazen with two more advanced machine learning
techniques to mitigate overfitting and increase accuracy and precision: (i) Random
Forests and (ii) Gradient Boosting Trees. Both classifiers are an ensemble learning
method operating by constructing a multitude trees at training time.

Decision Tree Before we talk about the Random Forest and Gradient Boosting Trees,
let us think about Decision Trees and what they are doing to the syntactical feature
space. Each feature is a dimension in the feature space, and each input is a feature
vector. A Decision Tree recursively splits up the inputs (points in feature space) based
on one feature at a time. So a Decision Tree essentially draws dividing lines in the
dimensions of feature space and recursively subdivides along other dimensions, allowing
it to separate the bug-triggering from the benign inputs. The Decision Tree eventually
constructs instructions to explain why a set of inputs (associated with the syntactical
features) results in the program’s behavior.

Random Forest We selected Random Forests due to their tendency to correct Decision
Trees’ habit of overfitting to their training data by constructing many individual Decision
Trees at training time. In addition, because we want to distinguish between two classes
(benign and bug-triggering), the Random Forests output is the class predicted by most
trees, also known as majority voting.

Random Forests are among the best performing Machine Learning algorithms and
have seen wide adoption to many domains and applications [EKG+14]. Although they
are harder to interpret than a single Decision Tree, they bring many advantages, such
as improved performance (wisdom of the crowds) and better generalization.

Similar to the single Decision Tree, a Random Forest also recursively subdivides the
feature space dimensions; however, by operating on multiple trees and the procedure of
how a final decision is obtained, each decision boundary is not as sharp. Consequently,
to predict an input to be, for instance, bug-triggering, at least half of the Decision Trees
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(a) Decision Tree (b) Random Forest (c) Gradient Boosting Tree

Figure 7: Decision boundaries of three di�erent machine learning methods. Dots dis-
played in orange are evaluated to bug-triggering; black dots correspond the
benign inputs. The darker the region of the feature space, the more likely a
point in the feature space will be predicted as bug-triggering.

need to come to the same conclusion. This is the case if the predicted regions of most
trees in the feature space overlap.

Gradient Boosting Trees Additionally, we selected Gradient Boosting Trees to
determine the features responsible for the shown behavior. They have recently shown
great success for many di�erent classification and regression tasks and produce state-
of-the-art results for many commercial applications [BGMP21].

As a reminder, boosting is an ensemble technique, which means that an ensemble of
simpler estimators (weak learners) makes a prediction. While this theoretical framework
makes it possible to create an ensemble of various estimators, in practice, we almost
always use Gradient Boosting Trees over Decision Trees. This is also the combination
that we selected for our approach. Thus, similar to the Random Forests, Gradient
Boosting Trees are an ensemble method consisting of multiple Decision Trees. Gradient
Boosting Trees aim to train an ensemble of trees, given that we know how to train a
single Decision Tree. This technique is called boosting because we expect an ensemble
to work much better than a single estimator (The same is true for the Random Forest).

Example To illustrate the di�erences of the individual approaches, let us again
continue the example introduced at the beginning Section 4. Figure 7 shows the decision
boundaries of three di�erent machine learning models, namely for the Decision Tree,
Random Forest and the Gradient Boosting Tree, for our two-dimensional feature space.
Again, inputs that trigger the behavior in question are colored orange; otherwise, they
are displayed in black. Each method tries to learn the set of predicates P responsible for
the observed outcome, for instance, the occurrence of a bug. To highlight the di�erences
of the classifiers, we display the decision boundaries and color the predicted regions
of the feature space according to the likelihood of an input being evaluated to either
benign or bug-triggering. Hence, the darker a region in the feature space, the more likely
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a point is predicted to be bug-triggering.

We observe that the Decision Tree (Figure 7a) strictly divides the feature space into
two classes (noticeable because there are only two di�erent shaded areas). This reflects
the nature of Decision Trees and their hyperrectangular cuts along the dimensions.
Simultaneously, this allows Decision Trees to be easily interpreted, with clear instructions
(See Section 3) on how to determine the regions of interest. Unfortunately, this is also
the reason why Decision Trees tend to overfit based on the training data.

Contrary to the Decision Tree, we see that the Random Forest (Figure 7b) divides
the space into many di�erently shaded areas. This is because each decision boundary
corresponds to one of the Decision Trees inside the Random Forest. Thus, the more
Decision Trees overlap and predict the same area to be bug-triggering, the darker the
region is displayed. This perfectly shows how Random Forests derive their predictions -
majority voting of the individual estimators (weak learners).

We can make similar observations for the Gradient Boosting Tree (Figure 7c), which
divides the feature space into di�erent prediction areas, with some being more likely
to contain bug-triggering inputs than others. However, as described in Section 3,
how a prediction is derived is fundamentally di�erent compared to Random Forests,
even though they both are ensemble estimators of multiple Decision Trees. Moreover,
since it is di�cult to interpret the underlying loss function, understanding what
predicates resulted in the Gradient Boosting Tree’s prediction is often not possible.
While boosting can increase the accuracy compared to single Decision Trees, it sacrifices
comprehensibility and interpretability.
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4.2. Extracting new Feature Requirements

As seen in the example (Figure 7), the initial performance regarding the approximation
of the error region of all classifiers is far from being satisfactory. However, to derive
a precise explanation of the circumstances of the program’s failure, we need to know
what predicates are responsible for the observed behavior. Unfortunately, the main
limitation of many machine learning models is an insu�cient training data set; thus,
the classifiers can only derive a limited hypothesis about the error regions they try to
explain. More precisely, an explanation and hypothesis of why a specific bug occurs will
often not be su�cient based on the initial inputs. Consequently, we need to generate
additional input data to improve our initial hypothesis. However, before we can produce
new inputs, we need to extract the predicates of the hypothesis to guide the input
generation process as e�ciently as possible. Since this procedure is directly tied to
the previously learned machine learning model, this activity is part of our modified
learning process, displayed as Activity 3 in Figure 5.

Generating additional inputs can be done in two fashions: (i) randomly generating
input or (ii) incorporating the classifier’s previous predictions to refine the decision
boundaries e�ciently. Generating new inputs by randomly adding points (represented
as feature vectors) to the feature space is a cost-e�ective method to improve the
classifier’s performance. However, as mentioned at the beginning of Section 4, not every
point in the feature space represents a syntactically valid input defined by the input
grammar. Therefore, the risk of creating feature vectors that do not belong to the
grammar’s search space is very high. Furthermore, due to the high dimensionality of
the feature space and the fact that the error region usually only occupies a small area
of the entire feature space, the chances of randomly generating a bug-triggering input
are extremely small.

Thus, to e�ectively guide the generation of new inputs and improve the classifier’s
predictions, Kampmann et al. [KHSZ20] generate additional data close to the decision
boundaries of the learned Decision Tree. They achieve this by following the individual
paths of the Decision Tree and systematically negating individual features. Then, the
resulting predicates are used as instructions to generate new inputs. In the following,
we call these instructions requirements r, and a set of predicate requirements forms a
specification s of a new input file. Since we treat both Random Forests and Gradient
Boosting Trees as white-box models, we adapted the algorithm of Kampmann et al.
[KHSZ20] to extract these requirements from the classifiers and generate additional
inputs that the learner deems to result in benign or bug-triggering behavior.

Algorithm 1 shows the pseudocode of our requirement extraction algorithm and
displays how we utilize the structure of the individual trees to extract new instructions
for each complete tree path. The algorithm requires the structural representation of
the ensemble tree-based estimators as input to extract new requirements. The output
is a set of input specifications s to generate additional samples. Since Random Forests
and Gradient Boosting Trees are composed of individual Decision Trees, we start our
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Algorithm 1: Extract Requirements
Input: A ensemble tree-based estimator T

Output: A set of input specifications S to generate new inputs
1 requirementSpecifications Ω ÿ
2 foreach decisionTree œ T do

3 decisionTreePaths Ω getAllPathsForDecisionTree(decisionTree)
4 decisionTreeRequirementSpecification Ω

getAllCombinations(decisionTreePaths)
5 requirementSpecifications Ω

requirementSpecifications fi decisionTreeRequirementSpecification

6 end

// Returns the final list all requirements specifications
7 return requirementSpecifications

algorithm by iterating over all individual Decision Trees (Algorithm 1 Line 2-6). For
each Decision Tree, we obtain all complete paths (root to leaf) with the function
getAllPathsForDecisionTree(decisionTree) (Line 3). The function uses a depth-first
approach, and once a leaf node is reached, it returns the complete path of predicates.
Since in our domain (binary classification), Decision Trees are binary trees, the total
number of paths from the root to leaf of a complete tree t with height h is the number
of leaves that is: 2h. After extracting all Decision Tree paths, we use the same idea
as Kampmann et al. and calculate all subsets of features and negate them. Since this
reduces to calculating the powerset of predicates on a path p of length h, the number
of possible new input specifications per path is exponential to the length of each path
(getAllCombinations(), Line 4). More precisely, for each path of length h, we extract
2h (complexity of the powerset) new input specifications.

Resultingly, the maximum number of new input specifications s of an estimator e,
given n trees of height h, is limited by the upper bound:

numberOfSpecifications(e) Æ n ◊ 2h ◊ 2h

Æ 22hn
(2)

Thus, we can expect that for a fixed height h, the ensemble estimators will generate
considerably more inputs than the Decision Tree, dependent on the number of con-
structed trees n. Note that we use all paths in the trees to generate additional inputs,
not only those expected to be bug-triggering. This follows the idea that benign inputs
act as a counterpart to the bug-triggering samples. Without them, the estimators would
determine the failure area too broad, resulting in an underfitting of the error region.
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Although we use the same algorithm to extract and eventually generate new inputs for
both Random Forest and Gradient Boosting Tree, the conceptual changes regarding the
improvement of the classifiers are fundamentally di�erent. This is strongly connected
to the di�erences in the construction and operation of both estimators.

Random Forest: For the Random Forest, this extraction algorithm follows the idea
that we want to improve and sharpen the decision boundaries of each Decision Tree.
Therefore, each Decision Tree obtains more training data and can adjust its hypothesis.
With the majority voting procedure, the combined individual improvements of the
Decision Trees will result in an overall improved estimator.

Gradient Boosting Tree: In contrast, we cannot apply the same concept of
improvement to the Gradient Boosting Tree. Because the Gradient Boosting Tree is
built in a stage-wise fashion, the Decision Trees are not independent. More precisely,
as in other boosting variants, each Decision Tree attempts to correct the errors of
its predecessor. Thus, by generating more inputs for each tree, we are not optimizing
each weak learner. However, the algorithm allows us to extract and generate new
inputs e�ectively; and with the availability of additional inputs, we expect the Gradient
Boosting Tree to refine and improve its hypothesis by minimizing a given loss function.

4.3. Continuing the Feedback Loop

Activity 4: Generating new Inputs After extracting the requirements for the ad-
ditional inputs, we parse the input specifications to the input generator (Figure 5,
Activity 4 ). We rely on the input generator proposed by Kampmann et al. [KHSZ20] to
produce the new candidates for this activity. The additional input specifications for the
Random Forest and the Gradient Boosting Tree increase the computational overhead
of the input generator. Theoretically, the time needed to produce new inputs increases
linearly with the number of individual Decision Trees of a fixed height2. However,
this is only an upper bound, as the generator utilizes several strategies to reduce the
computational overhead. For instance, if a produced input already covers an input
specification, the generator considers this specification as satisfied and will not produce
an additional input. As many trees learn and identify similar predicates, the actual
computational overhead is lower.

Example Continuing with the learned classifiers from our example and using our
proposed algorithm to extract the requirements for the new input specifications, we can
use the input generator of Alhazen to produce additional inputs. Figure 8 (Page 28)
shows the previously learned models (along with their previously learned decision
boundaries) and the newly produced inputs (displayed in red). We observe that we
generate, as expected, much more inputs for the Random Forest and Gradient Boosting
Tree than for the Decision Tree. This is due to the increased number of individual trees

2If the height of the trees is not fixed, the number of input specifications grows exponentially
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(a) Decision Tree (b) Random Forest (c) Gradient Boosting Tree

Figure 8: Decision boundaries of the previously learned models and newly generated
input data (displayed in red) after the feature extraction.

in the ensemble estimators and the resulting increased number of input specifications.
Although more training data is necessary to refine the models, producing new inputs
and learning from them is expansive. In particular, if the produced inputs are similar
to the already existing data, or the inputs cannot be generated (Section 3.4), which
means we are essentially wasting resources, more inputs may not necessarily account
for an improved model.

Activity 5: Execute new Input Files Before we can use the newly generated input
files to refine the hypothesis, we need to execute the input files and obtain labels that
classify whether the input files trigger the behavior (Figure 5, Activity 5 ). In particular,
we are interested in the test outcomes and whether we were able to generate new input
files that result in the behavior in question. Resultingly, these input files allow us to
mark and narrow down the error boundaries in the inducted feature space. When
executing the input files, we treat the program under test as a black box and only
observe the output, for instance, if the input files crashed the program, thus making
this process extremely e�cient. However, this also indicates the necessity of an oracle
that accurately tells us the outcome of the executed input file. For many cases, this
oracle is relatively simple since it reduces to observing if the program crashed or not.
Nonetheless, there are also scenarios where we cannot introduce a reliable oracle that
states whether the behavior in question occurred. For instance, if we want to determine
why an input requires an unusual amount of execution time, the oracle needs to account
for external influences and fluctuating execution times for the same input. Consequently,
this problem is directly tied to the oracle problem [BHM+15], which is related to the
controllability and observability of a behavior. We further discuss the importance of a
reliable oracle in Section 7.

After the input files have been executed and labeled, the process starts over with
the feature extraction of the newly generated input files (Figure 5, Activity 1 ). The
feedback loop continues until a pre-defined stopping criterion is fulfilled. For instance,
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(a) Decision Tree (b) Random Forest (c) Gradient Boosting Tree

Figure 9: Refined decision boundaries of the three machine learning models after the
generation, execution, and training of the additional inputs files.

this could be the exhaustion of the time budget, the number of iterations or no more
estimator changes compared to the previous iteration.

Example Finally, to complete our running example, Figure 9 shows the refined decision
boundaries and the performance of the classifiers. After we executed the input files
and obtained the corresponding outcomes and labels, we used the additional inputs
to retrain the machine learning models. As a result, we observe that all models could,
as expected, derive a better approximation of the error region compared to the initial
setting. We now repeat this feedback loop and iteratively refine the decision boundaries.
With this adapted process, we can use the ensemble estimators to derive a better
approximation of the error region, resulting in a better understanding of the predicates
responsible for the program behavior.
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Figure 10: TreeSHAP [LEC+20] summary plot for the prediction of the previously
learned and refined Random Forest classifier. The plot shows the importance
of the features and their contribution to the final prediction. The color
represents the value of the feature from low to high. Dots with a higher
SHAP value have a higher contribution to the final prediction than dots
with a low SHAP value.

4.4. Explaining the Prediction Theory

In the previous Sections, we have seen how we can use more advanced machine learning
estimators to classify and predict the program’s behavior. However, one final step is
still missing: the explanation why the programs fail. Contrary to the initial approach,
we use machine learning models that are not as easy to interpret as the Decision Tree -
a straightforward interpretation is one of the main advantages of the Decision Tree
in the first place. To help developers improve their software’s reliability, we need to
know what decisions of the machine learning algorithm lead to the predicted outcome.
As previously mentioned and seen in our minimal example, it is often unclear what
exact predicates caused the prediction of the Random Forest or the Gradient Boosting
Tree. Therefore, the final step of our approach is devoted to explaining why the input
triggers the program’s behavior (Figure 5 Activity 6). With this additional step, we
want to highlight that developers need to invest additional e�orts before they can
derive a reasonable answer for the program’s behavior.

Explaining why a model made specific decisions is also extremely important for
many other areas, particularly for medicine [RDK19], finance [JPC19], or autonomous
driving [HUAM+19], where it is crucial to understand and interpret the choices of the
machine learning model. Consequently, explainable machine learning is the subject of
recent research [SMV+19, GSC+19].

One such method to explain the decisions of machine learning approaches is the
tool called SHAP by Lundberg and Lee [LL17]. SHAP is a game-theoretic approach to
explain the output of a machine learning model. To explain the decisions of a model,
it computes Shapley values [Sha16] from coalitional game theory. The goal of SHAP
is to explain the decision by computing the contribution of each feature to the final
prediction. A SHAP value for a feature of a specific prediction represents how much
the model prediction changes when we observe that feature. Recently, Lundberg et al.
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(a) Dependency plot for x. (b) Dependency plot for y.

Figure 11: Dependency plots for the prediction of the previously learned and refined
Random Forest classifier, visualizing the feature interaction.

[LEC+20] also proposed TreeSHAP, a faster variant of SHAP for tree-based machine
learning models such as Decision Trees, Random Forests, and Gradient Boosting Trees.
Thus, TreeShap can analyze our learned models and may help developers interpret the
circumstances of the programs’ behavior.

To complete our running example and to exemplarily show how TreeSHAP can
be used, we try to explain the predictions made by the Random Forest from our
example classification problem. Note that our example is minimal, and SHAP may
work di�erently on real-world data. Particularly for high dimensional data.

The summary plot shown in Figure 10 (Page 30) combines feature importance with
feature e�ects. Each dot on the summary plot is a Shapley value for a feature and an
instance (input file). The position on the y-axis is determined by the feature and on
the x-axis by the Shapley value. Note that when dots do not fit together on the line,
they pile up vertically to show density. The color represents the value of the feature
from low to high, in our case from 0 to 2. The displayed features 0 and 1 correspond to
the ”x-feature” and ”y-feature”, respectively. The plot shows the relationship between
the value of a feature and its impact on the prediction. We see that the Random
Forest predicts inputs to be bug-triggering if they have a relatively high x-value and a
relatively low y-value. Contrary, a low x-value or a high y-value did not have a high
contribution to the bug-triggering prediction. If we compare the assumption to the
error region shown in Figure 6a (Page 21), we can confirm this initial observation.

However, we have to look at SHAP dependence plots to further confirm this first in-
dication of the relationship between the values. Figure 11 shows the feature dependence
plots with the feature interaction visualization. In these plots, each dot represents a
single prediction for an input; the x-axis is the value of the feature, and the y-axis
is the SHAP value for that feature. The color corresponds to a second feature that
may have an interaction e�ect. We generated two plots, one for the x-value with the
interaction of y-value (Figure 11a) and one for the y-value with the interaction of the
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x-value (Figure 11b). As expected, we observe a high correlation of the features. We
see that the Random Forest can derive a good explanation and approximation of the
error region. Inputs that have an x-value between 0.75 and 1.75 and a relatively low
y-value of about 0.5 to 1.25 are predicted to be bug-triggering

This extremely limited example already shows that developers need to invest serious
e�orts to derive an explanation for their program behavior. For accurate behavior
classification, developers need to evaluate thousands of syntactical features. However,
this is also true for the initial approach. In their evaluation, Kampmann et al. mitigate
this threat by learning Decision Trees of height five. Thus Alhazen is limited to a
maximum of five features (per tree path) to distinguish between bug-triggering and
non-bug-triggering inputs. This is similar to only considering the top five features that
have the highest impact on the prediction outcome.

Summary In this Section, we proposed an extended version of the tool Alhazen. We
used the existing strategy of refining a hypothesis and applied this technique to more
advanced machine learning models to improve the prediction of program behavior.
We showed how we use the individual weak learners of the Random Forests and
Gradient Boosting Trees to extract meaningful and e�ective input specifications. These
specifications are then used to produce new inputs that may help the machine learning
model refine or refute its theory on why a particular behavior is observed. However,
better machine learning alternatives do not come without a price. What they might
gain in accuracy and precision, they lose in comprehensibility and interpretability. On
a small example, we showed how the tool TreeSHAP could be used to explain the
decisions of the ensemble estimators. In the following Sections, we will evaluate our
approach on ten-real world bugs and examine if our proposed machine learning methods
can improve the bug prediction e�ectively.
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5. Experimental Setup

In this Section, we evaluate the e�ectiveness of our approach by performing experiments
on ten real-world bugs and applications. We have implemented our approach in the
tool AlhazenML

3, and we compare our comprehensive framework to the initial
approach of Kampmann et al. [KHSZ20], which will serve as the baseline. As proposed
in the introduction (Section 1), we ask the following research questions:

RQ1 Does AlhazenML allow us to predict the behavior of a program more
precisely?

RQ2 Does AlhazenML allow us to produce more defect triggering inputs
e�ciently?

To answer these research questions, we compare the baseline to the two configurations
AlhazenMLRF and AlhazenMLGBT , which use the Random Forest and the
Gradient Boosting Tree to learn the association between the grammar features and the
program behavior, respectively:

Approach Machine Learning Model
Alhazen Decision Tree
AlhazenMLRF Random Forest
AlhazenMLGBT Gradient Boosting Tree

By assessing the quality of the di�erent approaches both as predictors (RQ1) and
producers (RQ2), we ensure that they neither overspecialize nor overgeneralize.

Technical Setup To give all approaches similar starting conditions, we use Alhazen
as initially proposed, implemented with a single Decision Tree, a maximum height
of 5, and CART [BFOS84] as the construction algorithm. For the tree-based ensemble
estimators instantiation of AlhazenML, we used a maximum number of 10 trees,
again with a maximum height of 5. The reason for the relatively low number of trees
is based on the exponential amount of input specifications, presented in Section 4.2.
More trees were not feasible in our experimentations because the input generator could
not finish within a reasonable time (More than one hour for one iteration).

Subjects In order to examine the e�ectiveness of AlhazenML, we evaluate our
tool on the same test subjects and bugs (program behavior) that Kampmann et al.
have originally covered with their proposed approach. These test subjects require two,

3We make our implementations and raw experiment data available for replication at https://gitlab.
informatik.hu-berlin.de/eberlema/master-thesis
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Bug ID Predicate | Bug ID Predicate
of Interest | of Interest

calculator.1 error message | closure.3178 exception
closure.1978 exception | closure.3379 exception
closure.2808 exception | rhino.385 exception
closure.2842 exception | rhino.386 exception
closure.2937 exception | genson.120 exception

Table 1: Subjects and Predicates of Interest

in complexity varying input formats, namely JSON and JavaScript. Rhino [Rhi18]
and Closure [Clo19] serve as the JavaScript subjects, whereas Genson [Gen17] serves
as the JSON subject. Table 1 lists the subjects and bugs for our evaluation. All test
subjects are widely used in browsers and web applications. A further description of all
subjects, along with their grammars, can be found in the initial work of Kampmann et
al. However, in their paper, they use two more subjects, namely grep and find, which
we were not able to evaluate. These subjects are part of the dbgbench benchmark
[BSC+17]. They require unique execution environments, which we were able to put up;
however, we did not have the computational resources to execute the evaluation (with
the anticipated number of repetitions per approach) in a reasonable time, which is why
we had to neglect them.

Data Sets Similar to the evaluation of Kampmann et al., we use the same method
introduced by Soremekun et al. [SPH+20] to generate our evaluation data sets. Their
grammar-based generator uses a probabilistic grammar, in which probabilities are
assigned to choices of production rules. The distribution of these probabilities is learned
from a sample of inputs. Consequently, test inputs produced by a learned probabilistic
grammar are similar to the sampled inputs. Soremekun et al. call this idea “more of the
same” [SPH+20] because the produced inputs share the same features as the sampled
inputs. We used their approach to generate 1000 unique bug-triggering samples. We
stopped with a smaller number of samples if 20 re-runs could not generate enough
bug-triggering samples or a timeout of 1 hour was exhausted. Table 2 reports the sample
data used to evaluate the approaches. We see that the number of non-bug-triggering
and bug-triggering inputs di�er noticeably. In particular, for the subject closure2842,
we were only able to generate 177 bug-triggering inputs. Contrary to the evaluation of
the initial work, we evaluate the performance of the approaches with an initial input
corpus of just two inputs. This design decision follows the idea that we want to know
if our modified learning process can generate meaningful additional data and thus can
improve its accuracy and precision on its own. The two initial inputs, one benign and
one bug-triggering, are provided by the authors of Alhazen.
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Subjects Benign Bug-Triggering
calculator 3809 1245
genson120 1864 1242
rhino385 6088 1103
rhino386 4003 1112
closure1978 3140 1128
closure2808 4043 1157
closure2842 6222 177
closure2937 4058 1147
closure3178 3078 1048
closure3379 3944 1218

Table 2: Number of bug-triggering and non-bug-triggering (benign) inputs.

Measures To quantify the performance of the approaches, we use the statistical
measures accuracy, precision, and the F1 score. Informally, accuracy is the fraction of
predictions the classifier successfully predicted. Formally, accuracy has the following
definition:

Accuracy = TP + TN

TP + TN + FP + FN
(3)

where TP = True positive; FP = False positive; TN = True negative; FN = False
negative. However, accuracy alone does not tell the whole story. Precision is the fraction
of correct predictions among all the retrieved predictions and tries to answer what
proportion of positive identifications was actually correct. Formally, precision is defined
as follows:

Precision = TP

TP + FP
(4)

Since we are working with a class-imbalanced data set (see Table 2), there is a
significant disparity between positive and negative labels. To account for the subtleties
of class imbalances, we measure the F1 score, which is the harmonic mean of the
precision and recall. Thus, the relative contribution of precision and recall to the F1
score are equal. The F1 score reaches its best value at 1 and worst score at 0. The
formula for the F1 score is:

F1 score = 2 ◊ TP

2 ◊ TP + FP + FN
(5)

Research Protocol Because of the partially non-deterministic learning process and
the random nature of the input generation, we cannot rely on a single evaluation run.
Consequently, we repeated the experiments ten times per subject and approach. To
answer RQ1, we proceeded as follows: (i) First, we generated the evaluation data
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sets. (ii) Then, we started each approach for each subject with two initial inputs and
performed at most 40 iterations of the learning and refinement process. We stopped if
we did not generate new inputs in an iteration or the approach could not finish the
40 iterations within 3 hours. (iii) Finally, we measure the performance of the final
iteration of each approach.

For RQ2, we proceeded as follows: (i) First, we obtained the final machine learning
models (Decision Tree, Random Forest, and Gradient Boosting Tree) from RQ1 and
then (ii) used them to produce new bug-triggering and non-bug-triggering inputs. (iii)
Finally, we measure whether the machine learning models’ prediction matches the
actual program behavior.

Computational Setup The experiments were run concurrently on a Dell R920
compute server with four Intel Xeon E7-4880 v2 processors (60 cores), 2.5GHz, 1024GB
of system memory, and a Suse Leap 15 OS.
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Figure 12: Achieved accuracy of Alhazen, AlhazenMLRF , and AlhazenMLGBT

for each subject over ten runs.

6. Evaluation

In this Section, we present the results of our experiments and evaluate the performance of
each approach. To answer RQ1 and RQ2, we examine whether the di�erent approaches
and configurations can precisely predict the behavior of a program and can be used
to produce new failure-inducing inputs e�ciently. Finally, we discuss the threats to
validity.

6.1. AlhazenML as Predictor

This Section evaluates whether AlhazenML can accurately and reliably predict
the behavior of a program (RQ1). With this assessment, we ensure that the di�erent
approaches do not overspecialize.

6.1.1. Experimental Results

Figure 12 through 14 show the obtained statistical measures for the ten subjects and
ten repetitions. The boxplot is a standardized way of displaying the distribution of
data and gives us a good indication of how the values in the data are spread out.
Each boxplot shows the achieved performance of the three approaches - the baseline,
AlhazenMLRF , and AlhazenMLGBT - regarding their accuracy, precision, and
F1 scores. The vertical axis represents each approach’s achieved performance (i.e., sta-
tistical measure) in percent, and the horizontal axis displays the corresponding subject.
The median measurements are displayed by the horizontal lines inside the boxplots and
are highlighted in orange. To answer our RQ1, we compare the performance achieved
by the three approaches. In particular, we investigate whether AlhazenML reaches
at least the same percentage regarding the accuracy, precision, and F1 score as the
baseline.
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Figure 13: Precision of Alhazen, AlhazenMLRF , and AlhazenMLGBT for each
subject over ten runs.

Accuracy: Figure 12 displays the achieved accuracy of the approaches for each subject.
We observe that AlhazenMLRF reaches a higher median accuracy than the baseline
for all subjects. For instance, our configuration with the Random Forest gained almost
100% accuracy for the custom calculator subject, whereas the baseline cannot reliably
reach the full classification potential. Most notably, the Random Forest outperforms
the baseline for the Rhino subjects rhino385 and rhino386, with an increase in accuracy
of 3% and 6%, respectively. Furthermore, the same trend can be observed for the
Closure-related subjects, although the median increase is not as prominent. However, in
return, the interquartile range (50% of all data) of AlhazenMLRF is often notably
smaller than for the baseline. This indicates that our approach achieved good results
more reliably than the baseline over the ten runs.

Regarding accuracy, we observe that our approach AlhazenMLGBT , configured
with the Gradient Boosting Tree, cannot compete with the other two approaches. On
the contrary, the Gradient Boosting Tree often performs even worse than the baseline.
For instance, for the subjects closure2808 and closure3379, the approach performs
remarkably worse than the other two configurations and does not accurately predict
the program behavior. Only for the Rhino-related subject rhino385 can it achieve the
highest accuracy among all approaches.

Precision: Figure 13 shows the achieved precision of all three approaches. Similar
to the reached accuracy, we observe that AlhazenMLRF outperforms the baseline
and the Gradient Boosting Tree regarding the achieved median precision. In addition,
we can see a clear improvement for the subjets rhino386 and closure2937 compared to
the other two configurations. Furthermore, AlhazenMLRF achieves a noticeable
smaller standard deviation for the remaining subjects and bugs (e.g., closure1978 and
closure3379 ). While the configuration with the Random Forest compares favorably to
the baseline, the Gradient Boosting Tree often cannot achieve similar results. Only
for the subject rhino386 can AlhazenMLGBT provide a slightly better median
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Figure 14: Achieved F1 score of Alhazen, AlhazenMLRF , and AlhazenMLGBT

for each subject over ten runs.

precision over the ten runs. However, for rhino386, the other techniques were able to
generate much higher maximum values, indicated by the whiskers of the boxplots.

F1 Score: Finally, Figure 14 shows the achieved F1 score over the ten experimentations
per subject and approach. As already mentioned in Section 5, one of the main advantages
of the accuracy is that it is very easily interpretable. Still, the disadvantage is that it
is not robust when the data is unevenly distributed. To mitigate this threat, we use
the F1 score to compare the models. The visual data shows that AlhazenMLRF

compares well against the other two configurations and archives a higher median
F1 score for all subjects. This indicates that the Random Forest strikes a better
balance between precision and recall than the other approaches. Similar to the previous
metrics, the configuration with the Random Forest achieves the best results for the
subjects rhino386 and closure2937, increasing the median F1 score up to 7% and
3% compared to the baseline. Comparing all three approaches, we observe that the
performance of AlhazenMLGBT is the weakest among the di�erent methods. For
almost all subjects, the achieved F1 score is noticeably worse than that of the baseline
or AlhazenMLRF .

Table 3 (Page 40) shows the accumulated results of our experiments over the ten
repetitions. In addition, for each model, we display the minimum, median, and maximum
values, as well as the standard deviation (SD) of the achieved accuracy, precision, and
F1 scores. The detailed investigation supports our prior findings. We see that, apart
from the subject genson120, AlhazenMLRF achieves the highest median accuracy
and median F1 scores for all subjects. We also observe that our configuration with the
Random Forest comes out on top regarding the maximum of all three metrics, with
rhino385 being the only outlier. Furthermore, comparing the standard deviation of
all approaches reveals that AlhazenMLRF often achieves an order of magnitude
lower SD values than the baseline. This indicates that the Random Forest reached the
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given results more consistently. However, the table also shows that AlhazenMLGBT

with the Gradient Boosting Tree configuration did not yield any major improvement
compared to the baseline; it often performs alike or worse than the baseline.

To further increase the confidence in our conclusions, we conducted a statistical anal-
ysis. As we consider independent samples and cannot make any assumption about the
distribution of the results, we perform a non-parametric Mann-Whitney U test [MW47]
to check whether the achieved results of the approaches di�er significantly for each
subject. For the analysis, we compare the achieved performance of AlhazenMLRF

and AlhazenMLGBT to the baseline and report the results in Table 4 (Page 42).
The table shows the median measurements for each subject and approach. In addition,
it displays the p-values of the comparisons: baseline vs. AlhazenMLRF and base-
line vs. AlhazenMLGBT . The statistical analysis confirms that AlhazenMLRF

significantly improved accuracy, precision, and the F1 score for the calculator, rhino386,
closure1978, closure2842, and closure2937 subjects (p-value below 0.05). Although
AlhazenMLRF also achieves higher median values for the remaining subjects, we
cannot conclude that the Random Forest significantly increased the performance com-
pared to the baseline. For the configuration with the Gradient Boosting Tree, we can,
as expected, only confirm a significant improvement for the calculator subject and the
accuracy of rhino385.
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Alhazen AlhazenMLRF AlhazenMLGBT

median median p-value median p-value

calculator
Accuracy 0.993866 0.999802 0.037628 1.000000 0.003421
Precision 0.994131 0.999802 0.037628 1.000000 0.003421
F1 score 0.993911 0.999802 0.037628 1.000000 0.003421

genson120
Accuracy 0.999356 0.999356 0.514744 0.999356 0.782064
Precision 0.999357 0.999357 0.514744 0.999357 0.782064
F1 score 0.999356 0.999356 0.514744 0.999356 0.782064

rhino385
Accuracy 0.803991 0.826222 0.264424 0.854123 0.026213
Precision 0.867015 0.882625 0.082747 0.860582 0.710629
F1 score 0.825191 0.831364 0.369682 0.796105 0.573286

rhino386
Accuracy 0.793939 0.873607 0.000752 0.798827 0.369682
Precision 0.815819 0.895441 0.001943 0.827803 0.455899
F1 score 0.803929 0.877059 0.000752 0.727817 0.999995

closure1978
Accuracy 0.923500 0.930412 0.002598 0.914363 0.955395
Precision 0.934716 0.944616 0.002598 0.922683 0.982269
F1 score 0.925681 0.932709 0.002598 0.908585 0.978371

closure2808
Accuracy 0.980577 0.985673 0.544101 0.903750 0.999897
Precision 0.980880 0.986004 0.485256 0.914353 0.999838
F1 score 0.980674 0.985736 0.514744 0.893273 0.999935

closure2842
Accuracy 0.997031 0.999844 0.003421 0.993749 0.998057
Precision 0.997319 0.999845 0.003421 0.993789 0.997402
F1 score 0.997104 0.999844 0.003421 0.993361 0.998057

closure2937
Accuracy 0.935639 0.952450 0.014403 0.929971 0.876275
Precision 0.937462 0.954912 0.001943 0.935310 0.602032
F1 score 0.932915 0.952594 0.004465 0.924974 0.917253

closure3178
Accuracy 0.941711 0.944862 0.071570 0.930683 0.342105
Precision 0.952245 0.954566 0.071570 0.935614 0.630318
F1 score 0.943496 0.946492 0.071570 0.928143 0.397968

closure3379
Accuracy 0.967358 0.977141 0.095158 0.898295 0.999978
Precision 0.967343 0.977917 0.061503 0.910243 0.999978
F1 score 0.967293 0.977337 0.082747 0.887498 0.999978

Table 4: This table shows the median accuracy, precision and F1 scores achieved by
all approaches and their corresponding p-values. Values below 0.05 indicate
statistical significance, and are highlighted in blue. Bold values indicate signif-
icantly higher values according to the Mann–Whitney U test.
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(a) Accuracy (b) Precision (c) F1 score

Figure 15: Performance of all three approaches for the subject rhino386 with the in-
creasing number of iterations. Displayed is the median run of each approach.

(a) Accuracy (b) Precision (c) F1 score

Figure 16: Performance of all three approaches for the subject rhino386 over time
(seconds). Displayed is the median run of each approach.

6.1.2. Experimental Results over Time

The results of the previous Section show that AlhazenMLRF significantly improved
the performance of five subjects. Finally, to further confirm the practical relevance of
AlhazenML as a reliable predictor of program behavior (RQ1), we compare the
di�erent approaches over time. We exemplify this evaluation for the subject rhino386
and include the remaining subjects in the Appendix (Appendix A).

As mentioned in Section 4.2, we expect our approach with the two di�erent machine
learning configurations to take considerably more time. This is due to the introduced
computational complexity regarding the number of trees used to learn the models and
the resulting amount of new input specifications. To demonstrate that the additional
computational overhead is defensible, we exemplify how the statistical measures change
with increasing iterations and time for the subject rhino386.

The Figures 15 and 16 show how the accuracy, precision, and the F1 score for
rhino386 get improved with the increasing number of iterations and how the statistical
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measures change over time. For each figure, the vertical axis represents the achieved
performance of each approach in percent, and the horizontal axis represents the number
of iterations (40) and the time in seconds (up to 10800 seconds = 3 hours), respectively.

Figure 15 shows that all approaches can improve their classification results by
generating additional inputs with an increasing number of iterations. However, the
detailed investigation shows that for the subject rhino386, all models eventually reach a
plateau concerning the respective statistical measure. This happens after approximately
eight iterations for AlhazenMLRF , whereas the baseline with the Decision Tree
and AlhazenMLGBT reach a plateau after 20 and 12 iterations, respectively. After
these points, none of the approaches can increase the respective measure further.

Figure 16 shows the improvement of the statistical measures over time. We observe
that Alhazen with the Decision Tree requires, as expected, notably less time for each
iteration. Consequently, the baseline reaches the plateau after only about 2000 seconds,
whereas AlhazenMLRF needs around 5800 seconds to reach maximum performance.
AlhazenMLGBT is the last to reach a plateau after almost 8000 seconds. However,
even though the baseline needs much less time for a single iteration, it cannot achieve
the same accuracy, precision, and F1 score as AlhazenML configured with the
Random Forest estimator. Thus, we conclude that the significant improvement of the
classification justifies the additional time overhead for our approach AlhazenMLRF .

6.1.3. Experimental Analysis

The experimental results show that AlhazenMLRF improved the performance
compared to Alhazen significantly for five of the ten subjects. In our opinion, the main
reasons for this observation stem from two constituents: (i) less overfitting to the
training data and (ii) the generation of more additional inputs. On the on hand, as
already examined, Random Forests are ensemble estimators that adjust far better to
the sample set by not overfitting the training data. This is due to the training and
operating of multiple Decision Trees and the prediction procedure that determines the
final prediction (i.e., majority voting). This combination allows them to outperform
Decision Trees and achieve higher accuracy. On the other hand, the additional Decision
Trees also enable us to extract and obtain many more additional input files per
iteration. The Random Forest uses these additional input files to refine all contained
Decision Trees concurrently. Consequently, AlhazenMLRF reaches the maximum
performance with far fewer iterations than the baseline. However, because all these
additional inputs need to be produced, the time required to produce new inputs for an
iteration is much higher.

Nonetheless, only generating more inputs does not automatically indicate a better
performance of the machine learning estimator. For example, the results show that
AlhazenMLGBT was not su�cient to produce better predictions. Moreover, even
with more additional inputs generated per iteration (compared to the baseline), the
configuration of AlhazenML performed worse for most subjects. One reason for
this might be how the ensemble of Decision Trees derive their predictions. As previously
stated (Section 3), the trees are built in a stage-wise fashion, each correcting the errors
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of its predecessor. Since the loss function and the error-correcting coe�cients are not
encoded in each tree, the generation of new inputs may not have a considerable impact
on the improvement of the estimator. Consequently, the interpretability of the machine
learning model may have a notable impact on the performance of the approach. In
particular, if we do not know what predicates the estimator based its prediction on, the
e�ective input generation might be limited. Another significant factor is that Alhazen
already achieves impressive results, particularly for the Closure subjects. Moreover,
its accuracy and precision are for almost all subjects in the high nineties, making it
extremely hard for the other approach to improve them further.

Answer to RQ1 In accordance with the results and the subsequent analyses reported
above, we conclude the following:

RQ1 Based on our evaluation, we conclude that AlhazenML with the Random
Forest, performs at least equally compared to the baseline and significantly
improved the behavior classification for five of the ten subjects. Additionally,
AlhazenML with the Gradient Boosting Tree significantly improved one
additional subject, which the Random Forest could not advance.
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Subject Accuracy Precision Failing Inputs
calculator.py 1.0000 1.0000 5
genson120.py 1.0000 1.0000 2
rhino385.py 0.9512 0.9768 2
rhino386.py 0.9443 0.9607 3
closure1978.py 0.9888 0.9892 8
closure2808.py 0.9720 0.9822 6
closure2842.py 0.9258 0.9825 2
closure2937.py 0.9081 0.9467 11
closure3178.py 0.9616 0.9646 4
closure3379.py 0.9471 0.9711 13

Table 5: Accuracy, precision, and number of produced failing inputs when using the
baseline with the Decision Tree as a producer. The displayed results are the
median values over 10 runs.

6.2. AlhazenML as Producer

This Section evaluates whether AlhazenML can produce bug-triggering inputs
e�ciently (RQ2). With this assessment, we ensure that the di�erent approaches do
not overgeneralize.

We used the machine learning models (the baseline, AlhazenMLRF with the
Random Forest, and AlhazenMLGBT with the Gradient Boosting Tree) generated
in Section 6.1 and obtained the predicate sets and input specifications from the final
models. We then evaluated whether the model’s prediction matches the actual program
behavior. The idea is to use the machine learning models to produce more failure-
inducing inputs to help developers generate additional inputs for future test cases.

6.2.1. Experimental Results

Tables 5 through 7 show the results of our experiments. The "Accuracy" column
shows the percentage of produced inputs (bug-triggering and non-bug-triggering) and
whether they are actually bug-triggering and non-bug-triggering. We observe that all
approaches achieve high accuracy, with the baseline producing the best median results
for all subjects. The "Precision" column shows the percentage of inputs that the model
predicted to be failure-inducing and whether the inputs actually caused the program
behavior. Intuitively, precision can be interpreted as a metric on how sure we are that
the input we are about to produce actually results in the predicted failure. Consequently,
the higher the precision, the more e�cient is the approach to produce bug-triggering
inputs. Contrary, a low precision indicates that the failure-inducing inputs we want to
produce are not indeed failing inputs, meaning we are wasting resources. The results
again show that the baseline achieves the highest median precision. This indicates that
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Subject Accuracy Precision Failing Inputs
calculator.py 1.0000 1.0000 10
genson120.py 1.0000 1.0000 9
rhino385.py 0.9043 0.9653 29
rhino386.py 0.9206 0.9612 25
closure1978.py 0.9490 0.9672 33
closure2808.py 0.9427 0.9610 48
closure2842.py 0.9176 0.9530 24
closure2937.py 0.9119 0.9365 50
closure3178.py 0.9186 0.9646 15
closure3379.py 0.9261 0.9639 63

Table 6: Accuracy, precision, and number of produced failing inputs when using Al-

hazenML with the Random Forest as a producer. The displayed results
are the median values over 10 runs.

Subject Accuracy Precision Failing Inputs
calculator.py 1.0000 1.0000 81
genson120.py 0.9826 0.9831 280
rhino385.py 0.9073 0.9042 118
rhino386.py 0.9120 0.9199 126
closure1978.py 0.9527 0.9540 129
closure2808.py 0.9424 0.9422 220
closure2842.py 0.9262 0.9304 81
closure2937.py 0.9110 0.9068 166
closure3178.py 0.9495 0.9503 56
closure3379.py 0.8948 0.8924 271

Table 7: Accuracy, precision, and number of produced failing inputs when using Al-

hazenML with the Gradient Boosting Tree as a producer. The displayed
results are the median values over 10 runs.

most inputs produced by the baseline, which were predicted to be bug-triggering, are,
in fact, also bug-triggering. However, we recognize a noticeable di�erence in the total
number of produced failing inputs ("Failing Inputs" column) between the approaches.
The number of failing inputs ranges from 2 to 13 for the Decision Tree, 9 to 63 for
the Random Forest, and 56 to 280 for the Gradient Boosting Tree. We expect this
di�erence because we extract more input specifications for the ensemble estimators
than for the single Decision Tree. Although we produce more failing inputs for the
Gradient Boosting Tree, we are not as precise. Because the time needed to generate
a single input from an input specification is the same for all approaches, one would
prefer an approach that accurately and precisely generates inputs to use the available
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resources as e�ciently as possible.
To support our observation, we again perform a non-parametric Mann-Whitney U

test [MW47] to check whether the achieved results of the approaches di�er significantly.
Table 8 shows the obtained results and displays the median accuracy and median
precision achieved by all approaches for each subject. We again display the corre-
sponding p-values of the comparisons: baseline vs. AlhazenMLRF and baseline
vs. AlhazenMLGBT . According to the Mann–Whitney U test, bold values indicate
significantly higher values. We observe that the baseline achieves equal or better results
than AlhazenML. Particularly, the baseline outperforms the Gradient Boosting
Tree and achieves a significant better precision for the subjects genson120, rhino385,
closure1978, closure2842, and closure3379. The baseline is also more accurate than
the ensemble classifier for the subjects genson120 and rhino385 (AlhazenMLGBT ).
Additionally, compared to AlhazenMLRF the baseline is more accurate for the
subjects rhino385 and closure1978. We cannot report a significant di�erence in precision
for the baseline and the Random Forest.

6.2.2. Experimental Analysis

One reason the baseline is a more e�cient producer may be related to extracting and
producing new inputs for AlhazenML. Because the baseline only uses a single
Decision Tree, each path of the tree corresponds to precisely one prediction outcome,
namely either bug-triggering or non-bug-triggering. However, this is not the case for
AlhazenML. As previously stated, the Random Forest and the Gradient Boosting
Tree are ensemble classifiers. These models also learn and operate Decision Trees, but
the prediction procedure is di�erent. Because of the e�ects of, for instance, majority
voting, a single tree can predict an input to be bug-triggering, whereas the remaining
trees could predict the opposite (the final prediction would then be non-bug-triggering).
Consequently, each tree only has a small impact on the final decision, and the prediction
of a single tree does not necessarily reflect the decision of the ensemble. However, for our
approach, we consider each Decision Tree independently from the collection to produce
new inputs. Nevertheless, the real advantage of a Random Forrest is the combined
predictive power of the weak learners. Hence, considering each tree on its own may be
counterproductive for producing new inputs e�ciently. Unfortunately, the same is true
for the Gradient Boosting Trees. Even worse, because the Decision Trees within the
Gradient Boosting Tree are often just slightly better than random classifiers, we see
that the Gradient Boosting Tree performs significantly worse than the baseline.

Therefore, the production of new inputs is directly tied to the interpretability of
the model. We can derive clear instructions to produce more inputs only when we
precisely know why the model made the prediction. Consequently, because the ensemble
estimators are much harder to interpret, we observe a slight loss in precision, particularly
for the Gradient Boosting Tree.
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DecisionTree RandomForest GradientBoosting
median median p-value median p-value

calculator Accuracy 1.000000 1.000000 0.864334 1.000000 0.864334
Precision 1.000000 1.000000 1.000000 1.000000 1.000000

genson120 Accuracy 1.000000 1.000000 1.000000 0.982617 0.001106
Precision 1.000000 1.000000 1.000000 0.983056 0.002213

rhino385 Accuracy 0.951190 0.904315 0.015573 0.907268 0.015573
Precision 0.976763 0.965311 0.075222 0.904187 0.000323

rhino386 Accuracy 0.944272 0.920648 0.366817 0.912026 0.285303
Precision 0.960655 0.961215 0.909688 0.919864 0.103980

closure1978 Accuracy 0.988768 0.949021 0.043886 0.952663 0.051404
Precision 0.989199 0.967193 0.074562 0.954030 0.030576

closure2808 Accuracy 0.972027 0.942686 0.213330 0.942400 0.120307
Precision 0.982221 0.960951 0.519895 0.942201 0.161341

closure2842 Accuracy 0.925824 0.917645 0.297587 0.926250 0.235502
Precision 0.982517 0.952998 0.073463 0.930370 0.008594

closure2937 Accuracy 0.908069 0.911867 0.352623 0.911009 0.454844
Precision 0.946746 0.936534 0.909688 0.906787 0.307308

closure3178 Accuracy 0.961594 0.918639 0.153380 0.949490 0.454793
Precision 0.964600 0.964629 0.909586 0.950320 0.383957

closure3379 Accuracy 0.947109 0.926050 0.366865 0.894800 0.092938
Precision 0.971087 0.963860 0.909688 0.892397 0.017216

Table 8: Values show the median accuracy, precision, and corresponding p-values when
comparing to the Decision Tree. Bold values indicate significantly higher values
according to the Mann–Whitney U test; if the baseline with the Decision Tree
achieved significantly higher results, the corresponding p-values are highlighted
in red.
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Answer to RQ2 In accordance with the results and the subsequent analyses reported
above, we conclude the following:

RQ2 Due to the lack of interpretability, AlhazenML is equally or less e�-
cient as a producer than the baseline.

6.3. Threats to Validity

In this thesis, we rely on a search-based approach to precisely predict the behavior of a
program; as such, we see the following potential threats to the validity of our work.

Internal The main threats to internal validity are caused by the random nature of
machine learning algorithms. Therefore, it requires a careful statistical assessment
to make sure that observed behaviors are not randomly occurring. Consequently, we
repeated all experiments ten times and reported the descriptive statistics of our results.

To match the evaluation of Kampmann et al. [KHSZ20], we used the same set of
subjects, bugs, and seed inputs. Furthermore, we automated the data collection and
statistical evaluation. Finally, we did not tune the parameters of the baseline and
AlhazenML to reduce the threat of overfitting to the given grammars and bugs.
Only for the number of trees used for the Random Forest and Gradient Boosting Tree,
we determined appropriate numbers to make the approaches computational feasible.

Another threat to internal validity is the selection of the measurement metrics. To
compare our approach to the original work of Kampmann et al., we measure the
accuracy and precision of the individual models. However, the generated data sets
show a noticeable di�erence in the class data distribution; hence, solely relying on
the accuracy may not be su�cient. We included the F1 score to mitigate this threat,
allowing us to account for the subtleties of class imbalances and strengthen our results’
confidence.

External The main threat to external validity is the generalizability of the exper-
imental results that are based on a limited number of subjects and bugs. However,
similar to Kampmann et al., practically relevant subjects with di�erent complexities
(small-sized grammars like JSON, and rather complex grammars like JavaScript) and
widely used subjects (e.g., Rhino and Closure) have been selected. As a result, we are
confident that our approach will also work on other grammars, subjects, and bugs.
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7. Discussion and Limitations

In this Section, we further discuss the results of this thesis and present some limitations
of our proposed approach.

Di�erent Use Cases Our evaluation shows that AlhazenML with the Ran-
dom Forest significantly improved the predictive power of Alhazen for many subjects.
However, the improvement of the performance does not come without a cost. Due
to our predicate extraction mechanism and the associated computational overhead
(Section 4.2), AlhazenML needs considerably more time to complete an iteration of
the feedback loop compared to the baseline. Nonetheless, our evaluation also shows that
Alhazen eventually reaches a plateau for each subject, after which we do not observe
any further improvement of the statistical measurements. The same is true for our
approach, but AlhazenML achieves significantly higher accuracy, precision, and
F1 scores than the baseline, justifying the additional time needed. Consequently, one
could use the di�erent approaches with their specific performance trade-o�s in di�erent
scenarios. For example, on the one hand, if the goal is to explain the circumstances of
a bug as e�ciently as possible, a developer could use Alhazen and obtain good results
in a short period of time. However, on the other hand, if the goal is to obtain a reliable,
accurate, and precise model that classifies inputs correctly, developers would want
to invest the additional time overhead. This allows them to train a better predictive
model, which the baseline cannot reach.

AlhazenML as a Debugging Aid In their last evaluation step, Kampmann et al.
[KHSZ20] examine how much the Decision Tree produced by their tool Alhazen allows
developers to focus on the relevant aspects of the bug. They judge its capability to aid
in debugging by evaluating the number of non-terminal nodes from the grammar that
occur within the Decision Tree. The idea behind this is that the developers need to
focus only on specific aspects of the grammar, essentially reducing the search space and
making it easier to locate the failure. However, Random Forests and Gradient Boosting
Trees are not as easy to interpret as the Decision Tree. Furthermore, we currently
have no measurement to compare and quantify the usefulness of their explanations.
Although our approach has been shown to significantly improve the predictive power
of Alhazen, the quality of their explanation as to why the bug occurred depends on
other methods (e.g., SHAP [LL17]). One possible solution for future work could be
to use the concept of surrogate models and train, for instance, a Decision Tree on the
generated inputs of AlhazenML and examine if it compares di�erently to the
initial approach.

Surrogate Models As already briefly mentioned, learning a di�erent machine learning
model, such as a Decision Tree, is one option to interpret another classifier. In the
literature, these models are also known as surrogate models [RSG16]. For example, a
global surrogate model is an interpretable model trained to approximate the predictions
of a black-box model [Mol19]. The idea is to draw conclusions about the black-box model
by interpreting the surrogate model, essentially solving machine learning interpretability
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by using more machine learning. Although these models were out of the scope of this
thesis, future work could evaluate how surrogate models could be used to support the
interpretability of Alhazen practically. For example, as hinted at before, one could
use AlhazenML to derive a precise classification and then use, for instance, the
interpretability of a Decision Tree to explain the circumstances of the program behavior.
However, the drawn conclusions should be handled with caution because the surrogate
model only observes the black-box model and does not evaluate the data.

Support Vector Machines Initially, we also wanted to evaluate Support Vector
Machines (SVM) as a di�erent machine learning alternative for the Decision Tree
because of their ability classify non-linearly separable data. A linear SVM is a machine
learning algorithm that labels unknown data points by relating them to a hyperplane
of similar data points from a training dataset. For instance, let us consider a real-valued
training dataset X œ Rm◊n and a categorical label vector Y œ {≠1, 1}n so that every
data point X(i) is related to Y (i). A linear support vector machine tries to find the
maximum-margin hyperplane that divides the binary training dataset. It, therefore,
determines a support vector for each label so that the related data points are on
and above or rather on and below the vectors. Both support vectors are parallel to
each other, and their distance is maximized. The maximum-margin hyperplane lies
halfway between the two support vectors and can then be used to determine the
label of an unknown data point. Although they can achieve good results, particularly
on non-linearly separable data, interpreting them is extremely challenging for many
kernels. Even further, directly interpreting the higher dimensional support vectors to
generate additional inputs was not expedient. Without the help of other methods,
such as explainable machine learning techniques like SHAP, we could not extract and
produce meaningful inputs. To limit the scope of this thesis, we set out to concentrate
on white-box machine learning models, or ensemble models composed of white-box
classifiers, to which most configurations of SVMs not belong. Thus we did not further
advance them and neglected them for this thesis.

Observable Behavior Kampmann et al. [KHSZ20] developed Alhazen to explain the
circumstances of the program behavior in association with the syntactical properties of
the grammar. One of the main advantages of their tool is the feedback loop and the
resulting refinement of the hypothesis. One reason why this feedback loop works is
because of the observable outcome of the executed inputs. Alhazen can generate various
inputs and directly obtain the corresponding outcomes to train a supervised model.
Consequently, Alhazen only works if the oracle can reliably and accurately detect the
program behavior in question. As mentioned in Section 4.3, this problem is directly
connected to the oracle problem [BHM+15]. Often test oracles are built on assumptions
of previous program versions or just the experience of the developer. However, this
may undermine the test oracles: as they rely on implied conclusions and assumptions.
If the oracle cannot label the program behavior correctly, Alhazen and, in particular,
the di�erent machine learning alternatives may draw incorrect conclusions.
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8. Conclusion and Future Work

In this thesis, we proposed a modified extension of the tool Alhazen to predict and
classify the circumstances of program behavior more precisely. For our approach, we
replaced the proposed Decision Tree learner with more advanced machine learning
models. We selected the Random Forest and the Gradient Boosting Tree as suitable
candidates due to their tendency to correct the Decision Trees’ habit of overfitting and
their recent success for many di�erent classification tasks. These ensemble estimators
usually outperform Decision Trees, but unfortunately, they also sacrifice interpretability
and explainability - a crucial property for Alhazen. In order to improve the initial
hypothesis of the failure circumstances, Alhazen uses a feedback loop to iteratively refine
a theory of why the input resulted in the observed program behavior. However, the
feedback loop requires the generation and execution of additional inputs to strengthen
the hypothesis. Therefore, we extend Alhazen with a modified learning process to
train the di�erent machine learning models and to extract the predicates needed for
input production. Furthermore, to guide the input generation e�ciently, we treat the
individual learners of the ensemble estimator as white-box machine learning models.
The individual Decision Trees allow us to extract the predicates the ensemble estimators
deem responsible for the program behavior and generate di�erent inputs accordingly.

We evaluated the e�ectiveness of our approach by performing experiments on ten
real-world bugs and comparing our comprehensive framework AlhazenML to the
initial approach of Kampmann et al. [KHSZ20]. Furthermore, we examined the di�erent
approaches in two settings: (i) as Predictors (how precisely can they predict the failure
of a program) and (ii) as Producers (how e�ciently can they produce more failure-
inducing inputs). For the latter, the results suggest that our approach is generally not as
e�cient and cannot produce failure-inducing inputs as precise as the baseline. However,
the results also show that AlhazenML equipped with a Random Forest was able to
improve the behavior classification for five subjects significantly and performs equally
to Alhazen for the remaining subjects.

In conclusion, there is no single best-performing machine learning model to determine
the program’s behavior for any possible bug. Indeed, our evaluation shows that di�erent
models perform better or worse for di�erent grammars and subjects. However, our
approach shows that we can use other machine learning models in combination with
Alhazen and achieve better predictions for specific subjects.

Future Work There are several intriguing directions for future research. The no-free-
lunch theorem argues that no single machine learning model is better than any other
model [WM97]. Nonetheless, future work should further examine di�erent machine
learning alternatives, particularly black-box models, such as neural networks. The main
challenge remains the generation of additional inputs. However, in contrast to our
approach, which only explains the final theory, treating the learner inside Alhazen as
a black-box may require more advanced explainable machine learning techniques to
extract the predicates and refine the hypothesis.

Another exciting research direction is to combine Alhazen with grammar-based
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fuzzing. The explanations of Alhazen in association with the syntactic features of the
grammar could e�ciently guide the input generation of fuzzing approaches. Furthermore,
since most fuzzers randomly generate new data, using the refinement process to reduce
the search space of the grammar and limiting the scope to a handful of non-terminals
could be highly beneficial.

Finally, future work should also evaluate if Alhazen can be used to explain the circum-
stances of non-functional behavior. As previously mentioned, Alhazen requires a good
test oracle that separates the classification labels and reliably determines whether, for
instance, a non-functional requirement was violated. However, non-functional behavior,
like execution time or memory consumption, may be subject to external influence.
For example, running multiple processes simultaneously may have a high impact on
the response time, and repeated measurements may fluctuate. Resultingly, training
labels will be noisy, limited, or imprecise. In this scenario, Random Forests or Gradient
Boosting Trees might have an advantage over Decision Trees because they may less
overspecialize to certain outliers.
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A. Appendix

Figure 17: Performance for the subject calculator over increasing number of iterations.

(a) Accuracy (b) Precision (c) F1 score

Figure 18: Performance for the subject calculator over time..
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Figure 19: Performance for the subject closure1978 over increasing number of iterations.

(a) Accuracy (b) Precision (c) F1 score

Figure 20: Performance for the subject closure1978 over time..

Figure 21: Performance for the subject closure2808 over increasing number of iterations.
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(a) Accuracy (b) Precision (c) F1 score

Figure 22: Performance for the subject closure2808 over time.

Figure 23: Performance for the subject closure2937 over increasing number of iterations.

(a) Accuracy (b) Precision (c) F1 score

Figure 24: Performance for the subject closure2937 over time.
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