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ABSTRACT
Programs fail. But which part of the input is responsible for the
failure? To resolve the issue, developers must first understand how
and why the program behaves as it does, notably when it deviates
from the expected outcome. A program’s behavior is essentially the
set of all its executions. This set is usually diverse, unpredictable,
and generally unbounded. A pathological program behavior occurs
once the actual outcome does not match the expected behavior.
Consequently, developers must fix these issues to ensure the built
system is the desired software. In our upcoming research, we want
to focus on providing developers with a detailed description of the
root causes that resulted in the program’s unwanted behavior. Thus,
we aim to automatically produce explanations that capture the cir-
cumstances of arbitrary program behavior by correlating individual
input elements and their corresponding execution outcome.

To this end, we use the scientific method and combine genera-
tive and predictive models, allowing us (𝑖) to learn the statistical
relations between the features of the inputs and the program behav-
ior and (𝑖𝑖) to generate new inputs to refine or refute our current
explanatory prediction model.

CCS CONCEPTS
• Software and its engineering→ Software testing and debug-
ging; • Theory of computation → Grammars and context-free
languages; Oracles and decision trees; Active learning.
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1 INTRODUCTION
All software behavior is triggered by some defined program input.
But, which part of the input triggers which program behavior?
Answering this question is fundamental to understanding how and
why your program behaves as it does - especially when the behavior
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does not meet the expected outcome. To assure that a program ful-
fills the intented purpose, testing is an inevitable quality assurance
technique [2] and several test case generation techniques [3, 5, 21–
24, 26, 30, 34], including our own tool EvoGFuzz [12], have been
proposed to detect pathological behavior. However, once a patho-
logical behavior has been observed, localizing the underlying root
cause of the defects and problems can be highly challenging and
time-consuming [19, 29, 36]. Furthermore, fixing the problem may
take even longer [15, 36].

When diagnosing why a program shows a specific pathologi-
cal behavior, the first step is determining the class of program in-
puts that trigger the unintended behavior. Recently, Kampmann et
al. [18] presented an approach to automatically identify the circum-
stances of program failures. Their method associates the program’s
defect with the syntactical features of the input data, allowing them
to learn and extract the properties that result in the specific failing
behavior. Their proposed tool Alhazen generates a diagnosis by
forming an explanatory model based on observed, failure-inducing
input properties. Then, additional test inputs are generated and
executed to refine or refute the initial hypothesis, allowing Al-
hazen to obtain a prediction model for why the failure in question
occurs. Although Alhazen can determine the circumstances of
failure-triggering behavior, it cannot explain the root causes of all
diverse and unbound program behaviors. Because Alhazen uses a
binary oracle for each test case - pass or fail - it cannot classify and
learn continuous numerical or categorical behavior, like unusually
long run-time or memory consumption. Furthermore, the approach
is limited to failure conditions inferred by syntactic input elements.
Semantic properties, for instance, string allocations with ⟨string⟩
→ ⟨string-length⟩"."⟨chars⟩, where ⟨string-length⟩ and the num-
ber of used chars need to be equal in order to describe a valid string
encoding, cannot be explained.

To overcome these limitations, we propose a research plan that
extends and reaches beyond the statistical associations between
input elements and program failure.We plan to unify and generalize
the predictive and generative models in a single modular approach,
going way beyond simple statistical relations. This generalization
allows us to infer and refine relationships involving arbitrary input
features and program behaviors, thus boosting our understanding
of how and why software behaves as it does.

In summary, we plan to make the following contributions:

• We propose an approach to explain pathological program be-
havior that utilizes predictive and generative models.

• Weplan to invoke semantic properties and intermediate features
which serve as a vocabulary to model, predict, and explain
pathological program behavior.

• We will perform an empirical evaluation of the proposed ap-
proach on a number of subjects and grammars and compare the
results to the state-of-the-art [18].
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Figure 1: Context-Free grammar𝐺 , which allows us to encode
simple strings of characters.
⟨string⟩ → ⟨string-length⟩ "." ⟨chars⟩;
⟨chars⟩ → ⟨char⟩ | ⟨char⟩⟨chars⟩;
⟨char⟩ → /[a-Z]/;
⟨string-length⟩ → ⟨digit⟩ | ⟨digit⟩⟨string-length⟩;
⟨digit⟩ → /[0-9]/;

2 ASSOCIATING INPUT FEATURES AND
PROGRAM BEHAVIOR

In the following, we illustrate how we can utilize input format
specifications to extract syntactical features and properties from
inputs and utilize them to explain pathological behavior.

2.1 Describing Input Features
As already noted, a program’s behavior is the set of all execution
outcomes triggered by all possible inputs. As this set is generally
unbounded, program input can have a wide range of definitions.
For example, users can provide input via the command line, pro-
grams can accept inputs by reading files, or programs can receive
inputs from interacting with other programs and communicating
with their environment. Thus, the set of all possible inputs deter-
mines how a program will behave. Inputs accepted by a program
are called valid and can be described using a language. Note that we
commonly separate input languages and programming languages.
Input languages define the input space of valid inputs, whereas the
programming language refers to the language in which the pro-
gram was written. Notable exceptions are compilers or interpreters,
which take actual programs as input, thus ranking them among
the hardest to test pieces of software. Context-free grammars are
a very popular formalism to describe the input language of a pro-
gram and are a well-studied field of theoretical computer science,
compiler design, and linguistics [17]. Using a grammar allows us
to express a wide range of the properties of an input language. For
example, context-free grammars are great for expressing an input’s
syntactical structure and are the formalism of choice to describe
nested or recursive inputs.

Definition 2.1 (Context-FreeGrammar). A context-free gram-
mar is a 4-tuple (N,T,P,s), where 𝑁 is the set of non-terminals, 𝑇 the
set of terminals, 𝑃 the set of productions ruleswith 𝑃 : 𝑁 → (𝑁∪𝑇 ),
and ⟨s⟩ ∈ 𝑁 the initial starting symbol. Production rules are used to
expand a non-terminal ⟨S⟩ ∈ 𝑁 to one of its 𝑛 alternatives 𝐴𝑖 :

⟨S⟩ → 𝐴1 | 𝐴2 | 𝐴3 | ... | 𝐴𝑛 (1)

A tuple (𝑢, 𝑣) ∈ 𝑃 can also be described using the binary relation
𝑢 → 𝑣 , which is called a derivation. The most important short hand
for derivations is 𝑢 →∗ 𝑣 which signifies 𝑢 derives to 𝑣 using any
amount of derivations. An expression 𝑤 is called a word of the
grammar 𝐺 if it is derivable via 𝑠 →∗ 𝑤 .

For most languages, a context-free grammar corresponds to
the set of all possible input structures we are interested in: Each
word over the language is a valid input to the program. To learn
a relation between all valid program inputs and their execution
outcomes, we have to define a set of possible properties that we
can map to the actual behavior. A property of a word that can be
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Figure 2: We parse inputs into their features and learn a
predictive model that associates the input features with the
execution outcome.

described using only a context-free grammar is called a syntactical
feature. Kampmann et al. [18] already proposed a set of syntactical
features that can be derived from a context-free grammar, including
properties like input length or the presence of specific derivation
sequences.

For instance, let’s pick up the example from Section 1 and con-
sider the grammar 𝐺 (Figure 1) that allows us to encode simple
strings of characters. Now, we can define a syntactical feature that
states whether the terminal "A" was used to derive a word of the
language. Therefore, the word “2.Ai” has that property because, in
the derivation sequence, we must use "A" to construct the word.

As the feature set proposed by Kampmann et al. can only capture
a limited set of program behaviors, we want to expand their fea-
ture catalog to capture the circumstances of pathological behavior
more precisely. For example, given a grammar that describes the
language of program inputs, extended structural features would
be expressed as (𝑖) probability distributions of the grammar pro-
duction rules; (𝑖𝑖) predicates over individual grammar elements,
including the existence of arbitrary constraints on their semantic
interpretation; (𝑖𝑖𝑖) predicates over multiple grammar elements,
expressing relationships over their interpretation (“the number of
⟨chars⟩ is equal to the value of ⟨string-length⟩”); and (𝑖𝑣) predicates
over substructures, but limited to a particular input element (“All
⟨chars⟩ in a string have an ASCII value between 97 and 122’).

As an extension of the purely syntactical features, we also plan
to utilize intermediate features observed during program execu-
tion to enrich the learning of the predictive model. Examples of
such intermediate features are the execution time, the sequence
of method calls, or the execution count of specific program loops.
In addition, intermediate features allow us to gain insights into
advanced cause-effect chains, further guiding the developer toward
the root cause of the pathological behavior: “Because the number
of ⟨chars⟩ was greater than ⟨string-length⟩, the variable var became
true, which is why validate() was not called”. Figure 2 illustrates
that such input features would then serve as a vocabulary to model,
predict, and explain pathological behavior.

2.2 Learning from Input Features to predict
Behavior

Once we parsed the inputs into their syntactical features, we can use
a prediction model to learn the relation between the individual parts
of the input samples and their program behavior. Kampmann et
al. [18] use a decision tree classifier to map the responsible elements
to the execution outcome. Although decision tree classifiers are
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Figure 3: We use a combination of predictive and generative
models to repeatedly refine the explanatory theory.

among the most popular machine learning algorithms [33], given
their comprehensibility and simplicity, they often are incredibly
prone and sensitive to small changes in the input data. Minor vari-
ations may already result in a complete change in the constructed
tree and, consequently, in the final predictions [4]. Additionally,
with their hyperrectangular cuts of the feature space, single deci-
sion trees tend to overfit the learning data, severely decreasing its
generalizability and adaptability. With many advances in recent
machine learning models [7], other classifiers may be much more
efficient and improve upon the decision tree’s limited prediction
performance. Finally, binary decision trees can predict only a single
(Boolean) outcome - pass or fail. However, to apply our approach
to varying kinds of program behavior, we need to learn and predict
multiple behaviors of a program at once. These behaviors would
include not only Boolean pass or fail but also numerical features
— notably features such as resource consumption or fitness for a
particular goal. Thus, we plan to model the problem of learning a
mapping between multiple input features and output features as a
multi-task learning problem (MTL), typically solved by training a
multi-task machine learning model. The general idea of MTL, as
initially defined in [6], is to exploit the interdependencies between
various related tasks by learning a joint model. In particular, MTL
introduces an inductive bias that causes the model to prefer hy-
potheses that can explain more than one task, resulting in better
generalization, i.e. by avoiding overfitting to a particular task, and
improved learning efficiency.

3 EXPLAINING PATHOLOGICAL PROGRAM
BEHAVIOR

Based on the initial starting conditions, the theory as to why the
pathological behavior occurred may be far from being perfect. Thus,
to improve the explanatory model, we employ the scientific method:
hypothesis testing. We automatically generate new test inputs that
cover pathological output features, hypothesize about the associa-
tions of program behavior and input features, and derive a general
theory of the circumstances of the pathological program behavior
by repeatedly refining the hypothesis through test experiments
(Figure 3). After several iterations of conducting test experiments

and refining the explanatory theory, we obtain a model that ex-
plains and predicts the pathological behavior. Finally, the obtained
explanation allows us to generate targeted program inputs that
fulfill the relevant properties and trigger the unwanted program
behavior.

The generation of additional inputs serves the following two pur-
poses: First, by generating inputs that satisfy the relevant features,
we can effectively explore the surroundings of the original program
inputs; refining and retraining the predictive model will strengthen
the specialization— that is, distinguishing features that can be as-
sociated with the behavior of interest. Second, we will explore the
surroundings of yet unknown program inputs by inverting or negat-
ing relevant features; hence, refining and retraining the predictive
model will also result in generalization—if both predicates 𝑝 and ¬𝑝
result in the pathological behavior, then 𝑝’s relevance is diminished.

4 CHALLENGES
Generating new Inputs. Arguably one of the biggest challenges will
be to generate new program inputs that trigger a particular behavior
systematically. If the predictive model captures the circumstances of
the pathological behavior, derived inputs would need to fulfill these
circumstances to efficiently test the surroundings of the pathologi-
cal program behavior. Thus, we first need to identify the learned
features responsible for the behavior and then instantiate new in-
puts to exercise the targeted behavior. A solution could be to use
ISLa [32] which utilizes the smt constraint solver Z3 [9].

Debugging Diagnosis. To produce a diagnosis for the user, we need
to identify a combination of those input features that best explain
the observed behavior. To this end, we will make use of techniques
like SHAP [27], a game theoretic approach to explain the output
of any classifier by identifying those features that contribute most
to the classification — or in our case, the features that are most
associated with the pathological behavior. These features would
then be reported to the user as a diagnosis.

Test Oracle Problem. As previously mentioned, our approach re-
quires the execution of the program under test to obtain the actual
program behavior and output. This property is directly tied to the
test oracle problem. Creating oracles manually is nontrivial and ex-
tremely time-consuming. A promising solutionmight be TOGA [11]
that creates test oracles based on the context of the focal method.

5 OPPORTUNITIES
Predicting Behavior of yet unseen Inputs. Once we have trained a
probabilistic model that captures the circumstances of program
behavior, we can use them as predictors. Since we have learned
the relation and associations between the input features and the
execution outcome, we can provide a prediction of wherever a yet
unseen input will result in the pathological program behavior. The
trained models can serve as an extremely fast first line of defense
without demanding many resources or invoking the actual program.
Inputs deemed to trigger pathological behavior can be separated
and isolated from the current running system and executed in a
detached execution environment. This concept may, for instance,
play a major role in providing a continuous active online service.
Let’s say a developer encountered a security vulnerability in their
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code and is about to fix it. Instead of taking the system offline for
an unspecific amount of time, developers could use our generalized
approach to detect and reject pathological input data. This will give
developers enough time to locate and fix the vulnerability while
minimizing the system’s downtime.

Predicting Resource Consumption. With the introduction of inter-
mediate features, we can relate structural input features to interme-
diate program behavior, such as covering specific methods or mea-
suring the execution time and resource consumption (e.g., memory
usage). Then, we would identify relevant input features associated
with the pathological behavior using the predictive and genera-
tive models. Consequently, by reverting the learning process, we
can identify the input features that require a high computational
overhead or additional computational resources. And by far most
intriguing: By using the trained predictive model we can make
assumptions of the expected run-time or memory consumption
without invoking the actual program: “the ⟨string⟩ will require at
least ⟨memory⟩ because ⟨string-length⟩ is greater than 𝑥”

Explainable Machine Learning. The beauty of our proposed ap-
proach is that we can treat and evaluate the program under test
as a black-box. Thus, it is a highly intriguing opportunity to use
our approach to analyze the behavior (i.e., predictions) of other
machine learning models, allowing us to explain the decisions made
by hard-to-interpret classifiers or regression models. Furthermore,
the iterative nature of our approach enables us to create an ex-
plainable surrogate model that assesses the circumstances of the
black-box model’s predictions. Compared to other techniques, the
main advantage is the potential benefit of refining the explanatory
prediction model. Again, using the general idea of MTL allows us
to not only explain binary classifiers but opens a path to explain
numerical or categorical output.

6 EVALUATION
To evaluate our learned explanatory theories, we will use an experi-
mental evaluation based on the grammars and test subjects used by
Kampmann et al. [18]. First, we will derive a set of test suites with
varying sizes by using the grammar as a generator. Then, based on
these test suites, we will be able to assess the predictive models’
accuracy, precision, recall, and f1 scores. In particular, our experi-
mental setup will randomly separate the test suites into a training
set to train the predictive models and a test set to evaluate them.
The following research questions will guide our evaluation:
RQ1 Predictor: Can we predict pathological behavior of a pro-

gram precisely?
RQ2 Producer: Can we produce pathological behavior triggering

inputs efficiently?
RQ3 Debugging Aid: Can we reduce the input space to help

developers focus on the relevant aspects of the pathological
program behavior?

By assessing the models’ quality as predictor (RQ1) and producer
(RQ2), we ensure that they neither overspecialize nor overgeneral-
ize. Additionally, by producing more pathological program inputs,
we want to investigate whether we can improve fault localization
and program repair, further contributing to the practical relevance
of our approach.

7 RELATEDWORK
Detecting Bugs. A key component of our proposed approach is the
generation of additional inputs to refine aworking hypothesis. Com-
mon approaches that generate inputs to detect pathological behav-
ior automatically are based on the idea of fuzzing [14, 23, 28, 30, 35]
and symbolic execution. To reach the deep layers of a program,
grammar-based fuzzing uses grammars to generate syntactically
valid inputs [1, 12]. Havrikov and Zeller [16] introduced a grammar-
based method to systematically cover elements of the grammar that
allows revealing more profound defects cost-effectively. In the con-
text of grammar-based fuzzing, the generation of new inputs can
also be guided by probabilities attached to competing rules in the
grammar. Using a set of initial input files as seeds to obtain a prob-
abilistic grammar, Sorumekun et al. [31] generate similar inputs to
these seed files. Using these probabilistic grammars, we showed
that our tool EvoGFuzz [12] is able to further refine the probabili-
ties towards specific goals. Symbolic execution [8, 20] traditionally
explores program behavior with symbolic input values in contrast
to concrete ones, as done in testing and fuzzing. However, all the
above approaches focus mostly on detecting security vulnerabilities
and failing program behavior. In contrast, our approach focuses on
explaining previously detected pathological behavior. Therefore,
developers should apply our approach after unwanted behavior has
been detected to gain insights into the circumstances under which
the behavior occurs.
Program Behavior Classification. One goal of our approach is to
predict and explain program behavior. Recently, Tizpaz-Niari et
al. [33] proposed an approach to determine and explain differential
performance bugs. Their tool DPFuzz uses an evolutionary fuzzing
approach to generate interesting inputs and then clusters them
according to their execution time. Finally, DPFuzz uses a decision
tree to explain the performance differences in terms of program
inputs and internals. Machine learning techniques are also often
used to learn models that classify programs into benign and mali-
cious software for vulnerability detection [10]. Elish et al. [13] use
SVM’s to predict defect-prone software modules and Lo et al. [25]
proposed a technique that first extracts iterative patterns from pro-
gram traces of known ordinary and failing executions. Then, they
perform feature selection to select the most promising features for
classification. However, in contrast to our approach, the mentioned
techniques do not refine their predictive models.

8 CONCLUSION
Our approach focuses on repeatedly refining predictive and gener-
ative models to explain the circumstances of pathological behavior,
allowing us to infer and refine relationships involving arbitrary
input features and thus boost our understanding of how and why
software behaves as it does. We expect that our proposed approach
will help developers to understand, detect, and debug the program’s
pathological behavior.
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